Breeders rely on genetic integrity of material from genebanks; however, admixture, mislabeling, and errors in original data can occur and be detrimental. Two hundred and fifty accessions, representing paired samples consisting of original mother plants and their in vitro counterparts from the cultivated potato collection at the International Potato Center (CIP) were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity of the accessions and evaluate genetic diversity of the potato collection. Diploid, triploid, and tetraploid accessions were included, representing seven cultivated potato taxa (based on Hawkes, 1990). Fingerprints between voucher mother plants maintained in the field and in vitro clones of the same accession were used to evaluate identity, relatedness, and ancestry using hierarchal clustering and model-based Bayesian admixture analyses. Generally, in vitro and field clones of the same accession grouped together; however, 11 (4.4%) accessions were mismatches genetically, and in some cases the SNP data revealed the identity of the mixed accession. SNP genotypes were used to assess genetic diversity and to evaluate inter- and intraspecific relationships along with determining population structure and hybrid origins. Phylogenetic analyses suggest that the triploids included in this study are genetically similar. Further, some genetic redundancies among individual accessions were also identified along with some putative misclassified accessions. Accessions generally clustered together based on taxonomic classification and ploidy level with some deviations. STRUCTURE analysis identified six populations with significant gene flow among the populations, as well as revealed hybrid taxa and accessions. Overall, the Infinium 12K V2 Potato Array proved useful in confirming identity and highlighting the diversity in this subset of the CIP collection, providing new insights into the accessions evaluated. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality. For breeders and other users of these collections, confirmed identity is critical, as well as for quality management programs and to provide insights into the accessions evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1139/gen-2017-0201DOI Listing

Publication Analysis

Top Keywords

genetic identity
12
potato collection
12
accessions
10
genetic
8
mother plants
8
cultivated potato
8
infinium 12k
8
12k potato
8
potato array
8
genetic diversity
8

Similar Publications

Molecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.

View Article and Find Full Text PDF

Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management.

Plants (Basel)

January 2025

United States Department of Agriculture Agricultural Research Service Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA.

The maintenance of plant germplasm and its genetic diversity is critical to preserving and making it available for food security, so this invaluable diversity is not permanently lost due to population growth and development, climate change, or changing needs from the growers and/or the marketplace. There are numerous genebanks worldwide that serve to preserve valuable plant germplasm for humankind's future and to serve as a resource for research, breeding, and training. The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) and the Consultative Group for International Agricultural Research (CGIAR) both have a network of plant germplasm collections scattered across varying geographical locations preserving genetic resources for the future.

View Article and Find Full Text PDF

The marine diatom genus comprises cosmopolitan phytoplankton species commonly present in the Adriatic Sea. Species within the genus have been of significant concern because they produce domoic acid (DA), which can cause amnesic shellfish poisoning (ASP). In this study, we identified species along the Central and Southeastern Adriatic Sea, where monthly sampling carried out from February 2022 to February 2024 allowed for comprehensive species documentation.

View Article and Find Full Text PDF

Driven by the growing demands for plant-based protein in Europe and attempts of soybean breeding programs to improve the productivity of created varieties, this study aimed to enhance genetic resource utilization efficiency by providing information relevant to well-focused breeding targets. A set of 90 accessions was subjected to a comprehensive assessment of genetic diversity in a soybean working collection using three marker types: morphological descriptors, agronomic traits, and SSRs. Genotype grouping patterns varied among the markers, displaying the best congruence with pedigree data and maturity for SSRs and agronomic traits, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!