Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes.

ACS Appl Mater Interfaces

Institute for Interdisciplinary Research (IIR), Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education , Jianghan University, Wuhan 430056 , China.

Published: June 2018

The direct utilization of metallic lithium and sodium as the anodes for rechargeable batteries would be highly advantageous, which has been considered as one of the most promising choices for next-generation high-energy-density storage devices. Although the induced safety concerns, inferior rate, and cycling performance severely hinder the commercialization of lithium metal batteries (LMBs) and sodium metal batteries (SMBs), the recent development of nanotechnology-based solutions really revives the lithium/sodium metal anodes for high-energy batteries. In this work, an ultrastable carbon textile (CT)-based host with excellent infiltration for both metallic Li and Na has been designed and exhibits more flat voltage profiles, lower stripping/plating overpotential, and better cycling stability both in symmetric cell and full cell configurations, even in additive-free carbonate-based electrolyte compared with pure Li/Na electrodes. The highly conductive and mechanically robust three-dimensional CTs not only offer a stable scaffold against hyperactive lithium and sodium but also enable uniform nucleation and growth during stripping/plating process, which effectively suppress the dendrite growth and stabilize the electrode dimension. This facile strategy provides new insights into the design of stable hosts with prestored alkali metal to address the multifaceted issues in LMBs and SMBs simultaneously.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b03572DOI Listing

Publication Analysis

Top Keywords

lithium sodium
12
highly conductive
8
robust three-dimensional
8
host excellent
8
alkali metal
8
sodium metal
8
metal anodes
8
metal batteries
8
metal
6
conductive robust
4

Similar Publications

Constructing feasible sodium metal batteries (SMBs) faces complex challenges in stabilizing cathodes and sodium metal anodes. It is imperative, but often underemphasized, to simultaneously regulate the solid-electrolyte interphase (SEI) to counter dendrite growth and the cathode-electrolyte interphase (CEI) to mitigate cathode deterioration. Herein, we introduce lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) as an efficacious additive in a carbonate-based electrolyte to extend cycle lifespan of full SMBs: the capacity retention reaches 77.

View Article and Find Full Text PDF

Effect of the Electrolyte on the Oxygen Reduction Reaction with PCN-224(Co).

ChemSusChem

January 2025

Leiden University: Universiteit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, Room number EE4.19, 2333 CC, Leiden, NETHERLANDS, KINGDOM OF THE.

Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement.

View Article and Find Full Text PDF

Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.

View Article and Find Full Text PDF

Seawater batteries (SWBs) have emerged as a next-generation battery technology that does not rely on lithium, a limited resource essential for lithium-ion batteries. Instead, SWBs utilize abundant sodium from seawater, offering a sustainable alternative to conventional battery technologies. Previous studies have demonstrated the feasibility of achieving high energy densities in SWB anodes using vertically aligned electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!