Manganese transport and toxicity in polarized WIF-B hepatocytes.

Am J Physiol Gastrointest Liver Physiol

Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts.

Published: September 2018

Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export. For these experiments, hepatocytoma WIF-B cells were grown for 12-14 days to achieve maximal polarity. Immunoblots showed that Mn transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14 were present. Indirect immunofluorescence microscopy localized Fpn and ZIP14 to WIF-B cell basolateral domains whereas ZnT10 and ZIP8 associated with intracellular vesicular compartments. ZIP8-positive structures were distributed uniformly throughout the cytoplasm, but ZnT10-positive vesicles were adjacent to apical bile compartments. WIF-B cells were sensitive to Mn toxicity, showing decreased viability after 16 h exposure to >250 μM MnCl. However, the hepatocytes were resistant to 4-h exposures of up to 500 μM MnCl despite 50-fold increased Mn content. Washout experiments showed time-dependent efflux with 80% Mn released after a 4 h chase period. Hepcidin reduced levels of Fpn in WIF-B cells, clearing Fpn from the cell surface, but Mn efflux was unaffected. The secretory inhibitor, brefeldin A, did block release of Mn from WIF-B cells, suggesting vesicle fusion may be involved in export. These results point to a possible role of ZnT10 to import Mn into vesicles that subsequently fuse with the apical membrane and empty their contents into bile. NEW & NOTEWORTHY Polarized WIF-B hepatocytes express manganese (Mn) transporters ZIP8, ZnT10, ferroportin (Fpn), and ZIP14. Fpn and ZIP14 localize to basolateral domains. ZnT10-positive vesicles were adjacent to apical bile compartments, and ZIP8-positive vesicles were distributed uniformly throughout the cytoplasm. WIF-B hepatocyte Mn export was resistant to hepcidin but inhibited by brefeldin A, pointing to an efflux mechanism involving ZnT10-mediated uptake of Mn into vesicles that subsequently fuse with and empty their contents across the apical bile canalicular membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335010PMC
http://dx.doi.org/10.1152/ajpgi.00103.2018DOI Listing

Publication Analysis

Top Keywords

wif-b cells
16
fpn zip14
16
apical bile
12
wif-b
8
polarized wif-b
8
wif-b hepatocytes
8
transporters zip8
8
zip8 znt10
8
znt10 ferroportin
8
ferroportin fpn
8

Similar Publications

Retraction Note to: Akt2-Dependent Phosphorylation of Radixin in Regulation of Mrp-2 Trafficking in WIF-B Cells.

Dig Dis Sci

January 2022

Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, 803 CSB, MSC 623, Charleston, SC, USA.

View Article and Find Full Text PDF

Although steatosis (fatty liver) is a clinically well-described early stage of alcoholic liver disease, surprisingly little is known about how it promotes hepatotoxicity. We have shown that ethanol consumption leads to microtubule hyperacetylation that can explain ethanol-induced defects in protein trafficking. Because almost all steps of the lipid droplet life cycle are microtubule dependent and because microtubule acetylation promotes adipogenesis, we examined droplet dynamics in ethanol-treated cells.

View Article and Find Full Text PDF

A major focus for our laboratory is identifying the molecules and mechanisms that regulate basolateral-to-apical transcytosis in polarized hepatocytes. Our most recent studies have focused on characterizing the biochemical and functional properties of the small rab17 GTPase. We determined that rab17 is a monosumoylated protein and that this modification likely mediates selective interactions with the apically located syntaxin 2.

View Article and Find Full Text PDF

The plasma membrane of polarized hepatocytes is functionally divided into two domains: the apical and basolateral. Our focus is to define the molecular basis of polarized protein sorting of newly-synthesized membrane and secretory proteins in WIF-B cells, an excellent model system for polarized hepatocytes. We determined that MAL2 (myelin and lymphocyte protein 2) and its binding partner, serine/threonine kinase 16 (STK16) regulate basolateral constitutive secretion.

View Article and Find Full Text PDF

Manganese transport and toxicity in polarized WIF-B hepatocytes.

Am J Physiol Gastrointest Liver Physiol

September 2018

Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts.

Manganese (Mn) toxicity arises from nutritional problems, community and occupational exposures, and genetic risks. Mn blood levels are controlled by hepatobiliary clearance. The goals of this study were to determine the cellular distribution of Mn transporters in polarized hepatocytes, to establish an in vitro assay for hepatocyte Mn efflux, and to examine possible roles the Mn transporters would play in metal import and export.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!