Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b04915 | DOI Listing |
Micron
January 2025
Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:
Atomic-scale metrology in scanning transmission electron microscopy (STEM) allows to measure distances between individual atomic columns in crystals and is therefore an important aspect of their structural characterization. Furthermore, it allows to locally resolve strain in crystals and to calibrate precisely the pixel size in STEM. We present a method dedicated to the evaluation of interplanar spacing (d-spacing) based on an algorithm including curve fitting of processed high-angle annular dark-field STEM (HAADF STEM) signals.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
CAMD, Computational Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
The magnetic properties of solids are typically analyzed in terms of Heisenberg models where the electronic structure is approximated by interacting localized spins. However, even in such models the evaluation of thermodynamic properties constitutes a major challenge and is usually handled by a mean field decoupling scheme. The random phase approximation (RPA) comprises a common approach and is often applied to evaluate critical temperatures although it is well known that the method is only accurate wellthe critical temperature.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Understanding the behavior of high-entropy carbides (HECs) under oxygen-containing environments is of particular importance for their promising applications in structural components, catalysis, and energy-related fields. Herein, the structural evolution of (Ta, Ti, Cr, Nb)C (HEC-1) nanoparticles (NPs) is tracked in situ during the oxidation at the atomic scale by using an open-cell environmental aberration-corrected scanning transmission electron microscope. Three key stages are clearly discerned during the oxidation of HEC-1 NPs at the atomic level below 900 °C: i) increased amorphization of HEC-1 NPs from 300 to 500 °C due to the energetically favorable formation of carbon vacancies and substitution of carbon with oxygen atoms; ii) nucleation and subsequent growth of locally ordered nanocluster intermediates within the generated amorphous oxides from 500 to 800 °C; and iii) final one-step crystallization of non-equimolar MeO and MeO (Me = metallic elements, Ta, Ti, Cr, and Nb) high-entropy oxides above 800 °C, accompanied with the reduction in atomic defects.
View Article and Find Full Text PDFAdv Mater
November 2024
Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité - CNRS, Paris, 75013, France.
Nano Lett
November 2024
Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!