Small-molecule oxoanions are often imprinted noncovalently as carboxylates into molecularly imprinted polymers (MIPs), requiring the use of an organic counterion. Popular species are either pentamethylpiperidine (PMP) as a protonatable cation or tetraalkylammonium (TXA) ions as permanent cations. The present work explores the influence of the TXA as a function of their alkyl chain length, from methyl to octyl, using UV/vis absorption, fluorescence titrations, and HPLC as well as MD simulations. Protected phenylalanines (Z-l/d-Phe) served as templates/analytes. While the influence of the counterion on the complex stability constants and anion-induced spectral changes shows a monotonous trend with increasing alkyl chain length at the prepolymerization stage, the cross-imprinting/rebinding studies showed a unique pattern that suggested the presence of adaptive cavities in the MIP matrix, related to the concept of induced fit of enzyme-substrate interaction. Larger cavities formed in the presence of larger counterions can take up pairs of Z-x-Phe and smaller TXA, eventually escaping spectroscopic detection. Correlation of the experimental data with the MD simulations revealed that counterion mobility, the relative distances between the three partners, and the hydrogen bond lifetimes are more decisive for the response features observed than actual distances between interacting atoms in a complex or the orientation of binding moieties. TBA has been found to yield the highest imprinting factor, also showing a unique dual behavior regarding the interaction with template and fluorescent monomer. Finally, interesting differences between both enantiomers have been observed in both theory and experiment, suggesting true control of enantioselectivity. The contribution concludes with suggestions for translating the findings into actual MIP development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b00500 | DOI Listing |
Anal Methods
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gazi-antep, 27000, Turkey.
In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!