Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Owing to the versatility and biocompatibility, a self-polymerized DA (in the presence of air at pH 8.5 tris buffer solution) as a polydopamine (pDA) film has been used for a variety of applications. Indeed, instability under electrified condition (serious surface-fouling) and structural ambiguity of the pDA have been found to be unresolved problems. Previously, pDA films (has hygroscopic and insoluble property) prepared by various controlled chemical oxidation methods have been examined for the structural analysis using ex situ solid-state NMR and mass spectroscopic techniques. In this work, a new in situ approach has been introduced using an electrochemical quartz crystal microbalance (EQCM) technique for the improved structural elucidation of pDA that has been formed by a controlled electrochemical oxidation of DA on a carboxylic acid functionalized multiwalled carbon nanotube-Nafion (cationic perfluoro polymer) modified electrode (f-MWCNT-Nf) system in pH 7 phosphate buffer solution. Key intermediates like 5,6-dihydroxy indole (DHI; 150.7 g mol), dopamine (154.1 g mol), Na, PO, and polymeric product of high molecular weight, 2475 g mol, have been trapped on f-MWCNT-Nf surface via π-π (sp carbon of MWCNT and aromatic e-s), covalent (amide-II bonding, minimal), hydrogen, and ionic bonding and identified its molecular weights successfully. The new pDA film system showed well-defined peaks at E°' = 0.25 V and -0.350 vs Ag/AgCl corresponding to the surface-confined dopamine/dopamine quinone and DHI/5,6-indolequinone redox transitions without any surface-fouling complication. As an electroanalytical application of pDA, selective recognition of Pb ion via {(pDA)-hydroquinone-Pb} complexation with detection limit (signal-to-noise ratio = 3) 840 part-per-trillion has been demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.8b01209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!