Rate Constant for the Recombination Reaction CH + CH → CH at T = 298 and 202 K.

J Phys Chem A

Laboratory for Extraterrestrial Physics, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, Department of Natural Sciences, Coppin State College, Baltimore, Maryland 21216, Department of Chemistry, Millersville University, Millersville, Pennsylvania 17551, and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242.

Published: June 2002

The recombination of methyl radicals is the major loss process for methyl in the atmospheres of Saturn and Neptune. The serious disagreement between observed and calculated levels of CH has led to suggestions that the atmospheric models greatly underestimated the loss of CH due to poor knowledge of the rate of the reaction CH + CH + M → CH + M at the low temperatures and pressures of these atmospheric systems. In an attempt to resolve this problem, the absolute rate constant for the self-reaction of CH has been measured using the discharge-flow kinetic technique coupled to mass spectrometric detection at T = 202 and 298 K and P = 0.6-2.0 Torr nominal pressure (He). CH was produced by the reaction of F with CH, with [CH] in large excess over [F], and detected by low energy (11 eV) electron impact ionization at m/ z = 15. The results were obtained by graphical analysis of plots of the reciprocal of the CH signal vs reaction time. At T = 298 K, k (0.6 Torr) = (2.15 ± 0.42) × 10 cm molecule s and k (1 Torr) = (2.44 ± 0.52) × 10 cm molecule s. At T = 202 K, the rate constant increased from k (0.6 Torr) = (5.04 ± 1.15) × 10 cm molecule s to k (1.0 Torr) = (5.25 ± 1.43) × 10 cm molecule s to k (2.0 Torr) = (6.52 ± 1.54) × 10 cm molecule s, indicating that the reaction is in the falloff region. Klippenstein and Harding had previously calculated rate constant falloff curves for this self-reaction in Ar buffer gas. Transforming these results for a He buffer gas suggest little change in the energy removal per collision, -〈Δ E〉, with decreasing temperature and also indicate that -〈Δ E〉 for He buffer gas is approximately half of that for Argon. Since the experimental results seem to at least partially affirm the validity of the Klippenstein and Harding calculations, we suggest that, in atmospheric models of the outer planets, use of the theoretical results for k is preferable to extrapolation of laboratory data to pressures and temperatures well beyond the range of the experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp014044lDOI Listing

Publication Analysis

Top Keywords

rate constant
16
molecule torr
12
buffer gas
12
reaction →
8
atmospheric models
8
klippenstein harding
8
-〈Δ e〉
8
torr
6
rate
5
reaction
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!