The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000-5000 μm, 250-1000 μm, 250-0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada's premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100-300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and 250-0.63 μm sediment size class, whereas microfragments and microfibers were generally identified in all 5 sediment size classes. Abundance and distribution of the three types of microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC's premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada's oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965819 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196005 | PLOS |
Sci Rep
January 2025
Department of Systems Ecology and Sustainability, Faculty of Biology, University of Bucharest, Bucharest, Romania.
As conservation agricultural practices continue to spread, there is a need to understand how reduced tillage impacts soil microbes. Effects of no till (NT) and disk till (DT) relative to moldboard plow (MP) were investigated in a long-term experiment established on Chernozem. Results showed that conservation practices, especially NT, increased total, active and microbial biomass carbon.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China. Electronic address:
In this study, a large drinking water reservoir (Fengshuba Reservoir) was chosen as a representative case, and the bacterial communities in the sediments and soils of Water-level fluctuating zone (WLFZ) as well as their responses to heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) were systematically investigated. The results indicated that the abundance and diversity of the bacterial community obviously changed with seasonal hydrological variations in sediments, and the absolute abundance and composition of bacteria community differed significantly between the sediment phase and soil phase. Bacteria with the ability to degrade pollutants rapidly proliferate and gain ascendancy in the soil phase, with Burkholderia-Caballeronia-Paraburkholderia (B-C-P) and Bradyrhizobium forming the core of the largest community.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.
View Article and Find Full Text PDFPflugers Arch
January 2025
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!