Information transfer rates in optical communications may be dramatically increased by making use of spatially non-Gaussian states of light. Here, we demonstrate the ability of deep neural networks to classify numerically generated, noisy Laguerre-Gauss modes of up to 100 quanta of orbital angular momentum with near-unity fidelity. The scheme relies only on the intensity profile of the detected modes, allowing for considerable simplification of current measurement schemes required to sort the states containing increasing degrees of orbital angular momentum. We also present results that show the strength of deep neural networks in the classification of experimental superpositions of Laguerre-Gauss modes when the networks are trained solely using simulated images. It is anticipated that these results will allow for an enhancement of current optical communications technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.57.004180 | DOI Listing |
Mol Divers
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Landscape Architecture, Remote Sensing and GIS Laboratory, University of Cukurova, Adana, 01330, Turkey.
Recent advancements in satellite technology have greatly expanded data acquisition capabilities, making satellite imagery more accessible. Despite these strides, unlocking the full potential of satellite images necessitates efficient interpretation. Image classification, a widely adopted for extracting valuable information, has seen a surge in the application of deep learning methodologies due to their effectiveness.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
Introduction: A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.
Materials And Methods: Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals.
Anal Chem
January 2025
Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.
View Article and Find Full Text PDFCureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!