A photonic crystal fiber (PCF) made of fused silica glass, infiltrated with carbon tetrachloride (CCl), is proposed as a new source of supercontinuum (SC) light. Guiding properties in terms of effective refractive index, attenuation, and dispersion of the fundamental mode are studied numerically. As a result, two optimized structures are selected and verified against SC generation in detail. The dispersion characteristic of the first structure has the zero-dispersion wavelength at 1.252 μm, while the dispersion characteristic of the second structure is all-normal and equals -4.37  ps·nm·km at 1.55 μm. SC generation was demonstrated for the wavelengths 1.064 μm, 1.35 μm, and 1.55 μm. We prove the possibility of coherent, octave-spanning SC generation with 300 fs pulses with only 0.8 nJ of energy in-coupled into the core with each of the studied structures. Proposed fibers are fully compatible with all-silica fiber systems and PCFs with wide mode area, and can also be used for all-fiber SC sources. The proposed solution may lead to new low-cost all-fiber optical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.003738DOI Listing

Publication Analysis

Top Keywords

photonic crystal
8
infiltrated carbon
8
carbon tetrachloride
8
dispersion characteristic
8
optimization optical
4
optical properties
4
properties photonic
4
crystal fibers
4
fibers infiltrated
4
tetrachloride supercontinuum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!