AI Article Synopsis

Article Abstract

We study thermal equilibrium of classical pointlike counterions confined between symmetrically charged walls at distance d. At very large couplings when the counterion system is in its crystal phase, a harmonic expansion of particle deviations is made around the bilayer positions, with a free lattice parameter determined from a variational approach. For each of the two walls, the harmonic expansion implies an effective one-body potential at the root of all observables of interest in our Wigner strong-coupling expansion. Analytical results for the particle density profile and the pressure are in good agreement with numerical Monte Carlo data, for small as well as intermediate values of d comparable with the Wigner lattice spacing. While the strong-coupling theory is extended to the fluid regime by using the concept of a correlation hole, the Wigner calculations appear trustworthy for all electrostatic couplings investigated. Our results significantly extend the range of accuracy of analytical equations of state for strongly interacting charged planar interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm00571kDOI Listing

Publication Analysis

Top Keywords

strong-coupling theory
8
symmetrically charged
8
charged walls
8
harmonic expansion
8
theory counterions
4
counterions symmetrically
4
walls crystal
4
crystal fluid
4
fluid phases
4
phases study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!