Introduction: Small variations in trace element levels may cause important physiological changes in the human body. This study aims to evaluate five important trace elements in radiation workers.

Method: In this study, 44 radiation workers and an equal number of non-radiation workers were selected as the case and control group, respectively. The concentrations of iron, magnesium, zinc, copper, and selenium in the serum of the participants were measured using an Atomic Absorption Spectrometry (AAS).

Results: The mean concentrations of iron, magnesium, zinc, copper, and selenium for the case group were 107.3 µg/dl, 2.3 mg/dl, 80.9 µg/dl, 112.6 µg/dl and 216.7 ng/ml, respectively. The results for the control group were 121.9 µg/dl, 2.3 mg/dl, 82.3 µg/dl, 112.8 µg/dl and 225.2 ng/ml, respectively.

Conclusions: The mean concentration of iron in the case group was significantly lower than the control group (p-value = 0.012), while the concentrations of other elements in both of the groups were not significantly different. In the case group, except magnesium (p-value = 0.021), no significant relationship was found between age and the elemental concentrations. According to Spearman's test, there was a meaningful statistical correlation between the sex and concentration of iron, Mg, Zn, and Se. Also, the correlation between the concentration of magnesium and the weights of radiation workers was significant (p-value =0.044).

Download full-text PDF

Source

Publication Analysis

Top Keywords

radiation workers
12
control group
12
case group
12
trace elements
8
elements radiation
8
concentrations iron
8
iron magnesium
8
magnesium zinc
8
zinc copper
8
copper selenium
8

Similar Publications

Multi-layer shielding optimization of a high activity Am-Be mixed field irradiation facility.

Appl Radiat Isot

January 2025

Experimental Nuclear Physics Department, Nuclear Research Centre, Egyptian Atomic Energy Authority, Egypt; Cyclotron Facility, Egyptian Atomic Energy Authority, Egypt.

Neutron and gamma-ray shielding design for a 30Ci (1.11TBq) Am-Be irradiation facility is studied using MCNP5 Monte Carlo simulation code. The study focuses on the optimization of the shielding layers of the previously planned neutron irradiation facility.

View Article and Find Full Text PDF

Association of -607C/A (rs1946518) and -137G/C (rs187238) polymorphisms and immune response in radiation-exposed workers.

Int J Radiat Biol

January 2025

Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Indonesia.

Purpose: Interleukin-18, transforming growth factor-β, and superoxide dismutase are important cytokines and antioxidants in protecting the body from damage caused by radiation exposure through an immune response mechanism. Genetic polymorphisms -607 C/A and -137 G/C are thought to affect the IL-18 cytokine in carrying out its function as a biomarker to indicate adverse conditions due to radiation. The purposes of this study were to investigate the association between 607 C/A and -137 G/C SNPs on the concentrations of IL-18, and to measure TGF-β and SOD activity in radiation workers and control group.

View Article and Find Full Text PDF

Background: Radiotherapy practice for cancer treatment is resource-intensive and demands optimised processes for patient throughput while guaranteeing the quality and safety of the therapy. With the COVID-19 pandemic, ad-hoc changes in the operation of radiotherapy centres became necessary to protect patients and staff. This simulation study aimed to quantify the impact of designated COVID-19 protection measures and pandemic-related staff absence on patient waiting times and throughput.

View Article and Find Full Text PDF

Background: Occupational exposure to solar ultraviolet (UV) is known to cause malignant melanoma (MM) and non-melanoma skin cancer (NMSC). However, knowledge of the causal associations has developed erratically.

Aims: This review aims to identify when it was accepted that workplace solar UV exposure could cause skin cancer and when it was recognized that there was a risk for outdoor workers in Britain, identifying the steps employers should have taken to protect their workers.

View Article and Find Full Text PDF

Shadow Shield Whole Body Counter (SSWBC) is used to estimate internal dose of radiation workers due to the intake of fission and activation products. The SSWBC geometry was numerically modelled in FLUKA code. The computational model was validated by comparing the experimental and simulated counting efficiencies (CEs), also known as response, using Bhabha Atomic Research Centre (BARC) reference BOttle Mannequin Absorption (BOMAB) phantom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!