A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients.

Mikrochim Acta

College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding, 071002, China.

Published: May 2018

AI Article Synopsis

  • A stainless steel fiber was coated with a metal-organic framework called ZIF-7 using a sol-gel method, enabling it to effectively extract aldehydes from the breath of lung cancer patients.
  • The optimized extraction conditions resulted in high enrichment factors (300 to 10,000), low detection limits (0.61-0.84 μg L), and wide linear ranges for various aldehydes.
  • The modified fiber showed excellent thermal stability and reproducibility, allowing it to be reused more than 150 times, with recovery rates from samples between 84-113%.

Article Abstract

A stainless steel fiber was coated with a gate-opening controlled metal-organic framework ZIF-7 via a sol-gel method and applied to the solid-phase microextraction of aldehydes (hexanal, heptanal, octanal, nonanal, decanal) from exhaled breath by lung cancer patients. The effects of temperature and time on the sorption and desorption were optimized. Under optimum condition, the modified fiber displays enrichment factors (typically ranging from 300 to 10,000), low limits of detection (0.61-0.84 μg L), and wide linear ranges of hexanal, heptanal (5-500 μg L) and octanal, nonanal, decanal (10-1000 μg L). The high extraction capability for aldehydes is thought to result from (a) the combined effects of the large surface area and the unique porous structure of the ZIF-7, (b) the hydrophobicity and gate-opening effect of the sorbent, (c) the high selectivity of the window, and (d) the presence of unsaturated metal-coordination sites. The coated fiber is thermally stable and can be re-used >150 times. The relative standard deviation (RSD) for six replicate extractions using a single fiber ranged from 1.4-15.3% for intra-day and 2.4-16.1% for inter-day. The fiber-to-fiber reproducibility for three fibers prepared in parallel was in the range of 2.4-12.6% (RSD). The method was applied to the extraction of aldehydes from real samples and to the quantitation by gas chromatography. Recoveries from spiked samples ranged from 84 to 113%. Graphical abstract A metal-organic framework ZIF-7 coated stainless steel fiber was prepared via sol-gel method. The self-made fiber was applied in the solid phase microextraction of aldehydes from exhaled breath of lung cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-2843-1DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
12
microextraction aldehydes
12
exhaled breath
12
breath lung
12
lung cancer
12
cancer patients
12
gate-opening controlled
8
controlled metal-organic
8
solid-phase microextraction
8
aldehydes exhaled
8

Similar Publications

A novel electrochemical aptasensor based on bimetallic zirconium and copper oxides embedded within mesoporous carbon (denoted as ZrOCuO@mC) was constructed to detect miRNA. The porous ZrOCuO@mC was created through the pyrolysis of bimetallic zirconium/copper-based metal-organic framework (ZrCu-MOF). The substantial surface area and high porosity of ZrOCuO@mC nanocomposite along with its robust affinity toward aptamer strands, facilitated the effective anchoring of aptamer strands on the ZrOCuO@mC-modified electrode surface.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a fascinating class of structured materials with diverse functionality originating from the distinctive physicochemical properties. This review focuses on the specific chemical design of geometrically frustrated MOFs along with the origin of the intriguing magnetic properties. We have discussed the arrangement of spin centres (metal and ligand) which are responsible for the unusual magnetic phenomena in MOFs.

View Article and Find Full Text PDF

During the oxygen evolution reaction (OER), metal-organic framework (MOF) catalysts undergo structural reorganization, a phenomenon that is still not fully comprehended. Additionally, designing MOFs that undergo structural reconstruction to produce highly active OER catalysts continues to pose significant challenges. Herein, a bimetallic MOF (CoNi-MOF) with carboxylate oxygen and pyridine nitrogen coordination has been synthesized and its reconstruction behavior has been analyzed.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!