Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites.

Phys Chem Chem Phys

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

Published: June 2018

Organo-metal-halide perovskites are a promising set of materials for optoelectronic applications such as solar cells, light emitting diodes and lasers. Perovskite thin films have demonstrated amplified spontaneous emission thresholds as low as 1.6 μJ cm-2 and lasing thresholds as low as 0.2 μJ cm-2. Recently the performance of perovskite light emitting diodes has rapidly risen due to the formation of quasi 2D films using bulky ligands such as phenylethylammonium. Despite the high photoluminescent yield and external quantum efficiency of quasi 2D perovskites, few reports exist on amplified spontaneous emission. We show within this report that the threshold for amplified spontaneous emission of quasi 2D perovskite films increases with the concentration of phenylethylammonium. We attribute this increasing threshold to a charge transfer state at the PEA interface that competes for excitons with the ASE process. Additionally, the comparatively slow inter-grain charge transfer process cannot significantly contribute to the fast radiative recombination in amplified spontaneous emission. These results suggest that relatively low order PEA based perovskite films that are suitable for LED applications are not well suited for lasing applications. However high order films were able to maintain their low threshold values and may still benefit from improved stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp02133cDOI Listing

Publication Analysis

Top Keywords

amplified spontaneous
20
spontaneous emission
20
light emitting
8
emitting diodes
8
thresholds low
8
low μj
8
μj cm-2
8
perovskite films
8
charge transfer
8
amplified
5

Similar Publications

Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.

View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

Characterization of a novel SNP identified in Australian group A isolates derived from the M1 lineage.

mBio

December 2024

Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.

Group A (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1 lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood.

View Article and Find Full Text PDF

Gain Saturation of Encapsulated CdTe-Ag Quantum Dot Composite in SiO.

Nanomaterials (Basel)

December 2024

Department of Optics & Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.

Amplified spontaneous emission of CdTe and CdTe-Ag quantum dot composites were compared for increasing the optical stripe length, whereby optical gain coefficients for various emission wavelengths were obtained. In the case of CdTe-Ag nanoparticle composites, we observed that plasmonic coupling causes both optical enhancement and quenching at different wavelengths, where the amplified spontaneous emission intensity becomes enhanced at short wavelengths but suppressed at long wavelengths (>600 nm). To analyze the logistic stripe length dependence of amplified spontaneous emission intensity, we used a differential method to obtain the gain coefficient beyond the amplification range.

View Article and Find Full Text PDF

Chirality Evolution of Supramolecular Helices by Electron Transfer Assisted Secondary Nucleation.

Adv Sci (Weinh)

December 2024

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200230, P. R. China.

Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!