Purpose: To establish an F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET/CT) mathematical prediction model to improve the diagnosis of solitary pulmonary nodules (SPNs).

Materials And Methods: We retrospectively reviewed 177 consecutive patients who underwent F-FDG PET/CT for evaluation of SPNs. The mathematical model was established by logistic regression analysis. The diagnostic capabilities of the model were calculated, and the areas under the receiver operating characteristic curve (AUC) were compared with Mayo and VA model.

Results: The mathematical model was = exp⁡()/[1 + exp⁡()], = -7.363 + 0.079 × age + 1.900 × lobulation + 1.024 × vascular convergence + 1.530 × pleural retraction + 0.359 × the maximum of standardized uptake value (SUV). When the cut-off value was set at 0.56, the sensitivity, specificity, and accuracy of our model were 86.55%, 74.14%, and 81.4%, respectively. The area under the receiver operating characteristic curve (AUC) of our model was 0.903 (95% confidence interval (CI): 0.860 to 0.946). The AUC of our model was greater than that of the Mayo model, the VA model, and PET ( < 0.05) and has no difference with that of PET/CT ( > 0.05).

Conclusion: The mathematical predictive model has high accuracy in estimating the malignant probability of patients with SPNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896270PMC
http://dx.doi.org/10.1155/2018/9453967DOI Listing

Publication Analysis

Top Keywords

model
11
f-fdg pet/ct
8
pet/ct mathematical
8
mathematical prediction
8
prediction model
8
diagnosis solitary
8
solitary pulmonary
8
pulmonary nodules
8
mathematical model
8
receiver operating
8

Similar Publications

Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.

View Article and Find Full Text PDF

Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.

JMIR Med Inform

January 2025

INSERM U1064, CR2TI - Center for Research in Transplantation and Translational Immunology, Nantes University, 30 Bd Jean Monnet, Nantes, 44093, France, 33 2 40 08 74 10.

Precision medicine involves a paradigm shift toward personalized data-driven clinical decisions. The concept of a medical "digital twin" has recently become popular to designate digital representations of patients as a support for a wide range of data science applications. However, the concept is ambiguous when it comes to practical implementations.

View Article and Find Full Text PDF

Use of the FHTHWA Index as a Novel Approach for Predicting the Incidence of Diabetes in a Japanese Population Without Diabetes: Data Analysis Study.

JMIR Med Inform

January 2025

Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.

Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.

Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.

View Article and Find Full Text PDF

Multivariate pattern analysis was recently extended with covariate projections to solve the challenging task of modelling and interpreting associations in the presence of linear dependent multivariate covariates. Within a joint model, this approach allows quantification of the net association pattern between the outcome and the explanatory variables and between the individual covariates and these variables. The aim of this paper is to apply this methodology to establish the net multivariate association pattern between cardiorespiratory fitness (CRF) and a high-resolution linear dependent physical activity (PA) intensity descriptor derived from accelerometry in children and to validate the crucial sub-regions in the PA spectrum predicting CRF.

View Article and Find Full Text PDF

Background: Non-communicable diseases (NCDs) are the leading cause of death globally, and many humanitarian crises occur in countries with high NCD burdens. Peer support is a promising approach to improve NCD care in these settings. However, evidence on peer support for people living with NCDs in humanitarian settings is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!