The polarity proteins Par3 and aPKC are key regulators of processes altered in cancer. Par3/aPKC are thought to dynamically interact with Par6 but increasing evidence suggests that aPKC and Par3 also exert complex-independent functions. Whereas aPKCλ serves as tumor promotor, Par3 can either promote or suppress tumorigenesis. Here we asked whether and how Par3 and aPKCλ genetically interact to control two-stage skin carcinogenesis. Epidermal loss of Par3, aPKCλ, or both, strongly reduced tumor multiplicity and increased latency but inhibited invasion to similar extents, indicating that Par3 and aPKCλ function as a complex to promote tumorigenesis. Molecularly, Par3/aPKCλ cooperate to promote Akt, ERK and NF-κB signaling during tumor initiation to sustain growth, whereas aPKCλ dominates in promoting survival. In the inflammatory tumorigenesis phase Par3/aPKCλ cooperate to drive Stat3 activation and hyperproliferation. Unexpectedly, the reduced inflammatory signaling did not alter carcinogen-induced immune cell numbers but reduced IL-4 Receptor-positive stromal macrophage numbers in all mutant mice, suggesting that epidermal aPKCλ and Par3 promote a tumor-permissive environment. Importantly, aPKCλ also serves a distinct, carcinogen-independent role in controlling skin immune cell homeostasis. Collectively, our data demonstrates that Par3 and aPKCλ cooperate to promote skin tumor initiation and progression, likely through sustaining growth, survival, and inflammatory signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137026 | PMC |
http://dx.doi.org/10.1038/s41388-018-0313-1 | DOI Listing |
J Biol Chem
December 2024
Institute of Molecular Biology Department of Chemistry and Biochemistry 1229 University of Oregon Eugene, OR 97403. Electronic address:
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical Protein Kinase C (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding.
View Article and Find Full Text PDFRheumatology (Oxford)
December 2024
Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
Objectives: Podocyte bridging may be a key initial event occurring early in crescent formation. This study aims to probe the underlying mechanism of atypical protein kinase C (aPKC)/protease-activated receptor 3(Par3)/Par6 polarity complexes on podocyte motility and crescent formation during the progression of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).
Methods: The effects of anti-TNF-α monoclonal antibody (mAb) on the crescent formation, localization and expression of aPKC/Par3/Par6 polarity complexes, and activities of small GTPases (Rho/Rac1/Cdc42) were explored in an AAV mouse model.
Nat Commun
December 2024
Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
bioRxiv
October 2024
Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403.
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical Protein Kinase C (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding.
View Article and Find Full Text PDFJ Thromb Haemost
October 2024
Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands. Electronic address:
Background: The vascular endothelial cell (EC) monolayer plays a crucial part in maintaining hemostasis. An extensive array of G protein-coupled receptors allows ECs to dynamically act on key hemostatic stimuli such as thrombin and histamine. The impact of these individual stimuli on EC signal transduction has been the subject of various studies, but insight into discordant and concordant EC signaling between different G protein-coupled receptors remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!