The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy T of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and T obtained from thermodynamic measurements. In contrast, the temperature scale T at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRhSi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964219PMC
http://dx.doi.org/10.1038/s41467-018-04438-8DOI Listing

Publication Analysis

Top Keywords

temperature scale
8
scale valence
8
kondo lattices
8
kondo temperatures
8
kondo model
8
valence low
8
kondo
7
temperature
6
valence
5
valence changes
4

Similar Publications

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Objective: To determine the feasibility, efficacy, and safety of cold stored compared to room temperature platelet transfusion in patients with traumatic brain injury.

Summary Background Data: Data demonstrating the safety and efficacy of cold stored platelet transfusion are lacking following traumatic brain injury.

Methods: A phase 2, randomized, open label, clinical trial was performed at a single U.

View Article and Find Full Text PDF

Background: High-flow nasal cannula (HFNC) and non-invasive ventilation (NIV) are commonly used for respiratory support. This study aims to first establish whether to use HFNC or NIV based on comfort levels, and subsequently evaluate diaphragmatic function under equivalent comfort levels to determine the optimal modality for clinical application.

Methods: A self-controlled, non-randomized study was conducted with 10 healthy respiratory physicians as participants.

View Article and Find Full Text PDF

The ability to finely tune the nuclearity of active metal sites is critical for designing highly selective catalysts, especially for hydrogenation processes. In this work, we developed a novel PdCu catalyst with an ordered body-centered cubic (BCC) structure, enabling precise control over Pd nuclearity to optimize selectivity. Using a facile polyol synthesis method, we modulated the Pd coordination environment, reducing the Pd-Pd coordination number from 3 (disordered face-centered cubic, FCC) to 0 (ordered BCC), thereby achieving full isolation of Pd by the surrounding Cu atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!