The parallel occurrence in archerfish of fine-tuned and yet powerful predictive C-starts as well as of kinematically identical escape C-starts makes archerfish an interesting system to test hypotheses on the roles played by the Mauthner cells, a pair of giant reticulospinal neurons. In this study, we show that the archerfish Mauthner cell shares all hallmark physiological properties with that of goldfish. Visual and acoustic inputs are received by the ventral and lateral dendrite, respectively, and cause complex postsynaptic potentials (PSPs) even in surgically anaesthetised fish. PSP shape did not indicate major differences between the species, but simple light flashes caused larger PSPs in archerfish, often driving the cell to fire an action potential. Probing archerfish in the classical tests for feedback inhibition, established in the Mauthner-associated networks in goldfish, revealed no differences between the two species, including the indications for electrical and chemical synaptic components. Also, the established hallmark experiments on feed-forward inhibition showed no differences between the goldfish and archerfish Mauthner system. Extending these experiments to visual stimuli also failed to detect any differences between the two species and suggested that acoustical and visual input cause feed-forward inhibition, the magnitude, time course and duration of which match that of the respective PSPs in both archerfish and goldfish. Our findings question simple views on the role of the Mauthner cell and suggest that the archerfish Mauthner cell should be a good system to explore the function of these giant neurons in more sophisticated C-start behaviours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.175588 | DOI Listing |
Sci Rep
January 2025
Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common.
View Article and Find Full Text PDFNeuroscience
January 2025
Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.
View Article and Find Full Text PDFNeurosci Bull
December 2024
Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration.
View Article and Find Full Text PDFElife
December 2024
Instituto de Fisiología y Biología Molecular y Celular, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.
Multisensory integration (MSI) combines information from multiple sensory modalities to create a coherent perception of the world. In contexts where sensory information is limited or equivocal, it also allows animals to integrate individually ambiguous stimuli into a clearer or more accurate percept and, thus, react with a more adaptive behavioral response. Although responses to multisensory stimuli have been described at the neuronal and behavioral levels, a causal or direct link between these two is still missing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany.
The ability to follow the evolutionary trajectories of specific neuronal cell types has led to major insights into the evolution of the vertebrate brain. Here, we study how cave life in the Mexican tetra () has affected an identified giant multisensory neuron, the Mauthner neuron (MN). Because this neuron is crucial in driving rapid escapes, the absence of predation risk in the cave forms predicts a massive reduction in this neuron.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!