Metaplasticity is the regulation of synaptic plasticity based on the history of previous synaptic activation. This concept was formulated after observing that synaptic changes in the visual cortex are not fixed, but dynamic and dependent on the history of visual information flux. In visual cortical neurons, sustained synaptic stimulation activate the enzymatic complex NOX2, resulting in the generation of reactive oxygen species (ROS). NOX2 is the main molecular structure responsible for translating neural activity into redox modulation of intracellular signaling pathways involved in plastic changes. Here, we studied the interaction between NOX2 and visual experience as metaplastic factors regulating synaptic plasticity at the supergranular layers of the mouse visual cortex. We found that genetic inhibition of NOX2 reverses the polarizing effects of dark rearing from LTP to LTD. In addition, we demonstrate that this process relies on changes in the NMDA receptor functioning. Altogether, this work indicates a role of ROS in the activity-dependent regulation of cortical synaptic plasticity. Synaptic plasticity in the visual cortex is modulated by the history of sensory experience and this modulation has been defined as metaplasticity. Dark rearing facilitates synaptic potentiation as a mechanism optimizing the range of synaptic modification. This process requires the production of reactive oxygen species mediated by the enzymatic complex NOX2. If the activity of NOX2 is inhibited, then visual deprivation results in synaptic depression. These findings increase our knowledge about metaplasticity and help in our understanding of how neural activity modulates cellular mechanisms of synaptic change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6595975 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2617-17.2018 | DOI Listing |
Commun Biol
January 2025
School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Radiology (P.C.F., A.P.S., J.J.Y.).
Background And Purpose: There is surging interest in the therapeutic potential of psychedelic compounds like psilocybin in the treatment of psychiatric illnesses like major depressive disorder (MDD). Recent studies point to the rapid antidepressant effect of psilocybin; however, the biological mechanisms underlying these differences remain unknown. This study determines the feasibility of using diffusion MRI to characterize and define the potential spatiotemporal microstructural differences in the brain following psilocybin treatment in C57BL/6J male mice.
View Article and Find Full Text PDFSci Rep
January 2025
Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:
In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Radiology, Aerospace Center Hospital, Beijing, China.
Background: Acupuncture has been demonstrated to have a promising effect on Alzheimer's disease (AD), but the underlying neural mechanisms remain unclear. The retrosplenial cortex (RSC) is one of the earliest brain regions affected in AD, and changes in its functional connectivity (FC) are reported to underlie disease-associated memory impairment. The aim of this study was to examine the effect of acupuncture on FC with the RSC in patients with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!