Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens. Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964351 | PMC |
http://dx.doi.org/10.1128/mBio.00869-18 | DOI Listing |
Sci Total Environ
January 2025
Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Organization for Public Health and Environment Management, Lalitpur, Nepal; Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, United States of America; Center of Research Excellence in Wastewater based Epidemiology, Morgan State, Baltimore, MD, United States of America. Electronic address:
Given their abundance in human fecal samples, crAssphage and Pepper Mild Mottle Virus (PMMoV) are proposed as indicators for human enteric viruses. This study measured crAssphage and PMMoV in raw sewage samples (n = 24) between June 2014 and May 2015 from two wastewater treatment facilities in southern Arizona, USA. Both crAssphage and PMMoV were detected in nearly 100% of samples.
View Article and Find Full Text PDFNat Rev Microbiol
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide in all age groups and cause significant disease and economic burden globally. To date, no approved vaccines or antiviral therapies are available to treat or prevent HuNoV illness. Several candidate vaccines are in clinical trials, although potential barriers to successful development must be overcome.
View Article and Find Full Text PDFAntibody-dodging norovirus variant may be helping drive a rise in outbreaks.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.
View Article and Find Full Text PDFBackground: Viral gastroenteritis is a significant global health concern. An effective, rapid, and easy-to-use diagnostic tool is essential for screening causative viruses.
Methods: Forty-eight samples, known to be infected with one of the following viruses: norovirus, group A rotavirus, astrovirus, adenovirus, and sapovirus determined by reverse transcription-PCR and nucleotide sequencing, were evaluated by the Fast Track Diagnostics (FTD) viral gastroenteritis assay.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!