AI Article Synopsis

  • Colorectal cancer is a major health issue influenced by both genetic and environmental factors, with lifestyle choices like physical activity (PA) significantly impacting risk.
  • Research suggests that a specific gene, PGC-1α, may serve as a biomarker that links physical activity to reduced colorectal cancer risk due to its regulatory role in mitochondrial function.
  • Understanding how this gene interacts with PA could lead to advances in prevention strategies and treatments for colorectal cancer.

Article Abstract

Colorectal cancer is a significant public health concern. As a multistage and multifactorial disease, environmental and genetic factors interact at each stage of the process, and an individual's lifestyle also plays a relevant role. We set out to review the scientific evidence to study the need to investigate the role of the gene as a biomarker of the physical activity's (PA) effect on colorectal cancer. PA is a protective factor against colorectal cancer and usually increases the expression of This gene has pleiotropic roles and is the main regulator of mitochondrial functions. The development of colorectal cancer has been associated with mitochondrial dysfunction; in addition, alterations in this organelle are associated with colorectal cancer risk factors, such as obesity, decreased muscle mass, and the aging process. These are affected by PA acting, among other aspects, on insulin sensitivity and oxygen reactive species/redox balance. Therefore, this gene demands special attention in the understanding of its operation in the consensual protective effect of PA in colorectal cancer. A significant amount of indirect evidence points to PGC-1α as a potential biomarker in the PA-protective effect on colorectal cancer. The article focuses on the possible involvement of in the protective role that physical activity has on colorectal cancer. This is an important topic both in relation to advances in prevention of the development of this widespread disease and in its therapeutic treatment. We hope to generate an initial hypothesis for future studies associated with physical activity-related mechanisms that may be involved in the development or prevention of colorectal cancer. is highlighted because it is the main regulator of mitochondrial functions. This organelle, on one hand, is positively stimulated by physical activity; on the other hand, its dysfunction or reduction increases the probability of developing colorectal cancer. Therefore, we consider the compilation of existing information about the possible ways to understand the mechanisms of this gene to be highly relevant. This study is based on evidence of PGC-1α and physical activity, on PGC-1α and colorectal cancer, on colorectal cancer and physical activity/inactivity, and the absence of studies that have sought to relate all of these variables. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-17-0329DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
52
colorectal
13
cancer
13
physical activity
12
biomarker physical
8
cancer colorectal
8
main regulator
8
regulator mitochondrial
8
mitochondrial functions
8
physical
7

Similar Publications

Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates "RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK" pathways, which enhance cell division, survival, angiogenesis, and tumor growth while inhibiting apoptosis and metastasis. Secondary mutations (e.

View Article and Find Full Text PDF

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Background: Patients with rectal cancer often experience adverse effects on urinary, sexual, and digestive functions. Despite recognised impacts and available treatments, they are not fully integrated into follow-up protocols, thereby hindering appropriate interventions. The aim of the study was to discern the activities conducted in our routine clinical practice outside of clinical trials.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!