mutations are linked to amyotrophic lateral sclerosis, but their mode of action is unclear. In a 29-year-old patient with rapid disease progression, we discovered a novel mutation (Q108P) in a conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH) domain. The aggressive clinical phenotype prompted us to probe its pathogenicity. Unlike the wild-type protein, mitochondrial import of CHCHD10 Q108P was blocked nearly completely resulting in diffuse cytoplasmic localization and reduced stability. Other CHCHD10 variants reported in patients showed impaired mitochondrial import (C122R) or clustering within mitochondria (especially G66V and E127K) often associated with reduced expression. Truncation experiments suggest mitochondrial import of CHCHD10 is mediated by the CHCH domain rather than the proposed N-terminal mitochondrial targeting signal. Knockdown of Mia40, which introduces disulfide bonds into CHCH domain proteins, blocked mitochondrial import of CHCHD10. Overexpression of Mia40 rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation. Since reduction in CHCHD10 inhibits respiration, mutations in its CHCH domain may cause aggressive disease by impairing mitochondrial import. Our data suggest Mia40 upregulation as a potential therapeutic salvage pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991575PMC
http://dx.doi.org/10.15252/emmm.201708558DOI Listing

Publication Analysis

Top Keywords

mitochondrial import
28
chch domain
16
import chchd10
16
mitochondrial
8
domain aggressive
8
chchd10 q108p
8
import
7
chchd10
6
novel chchd10
4
chchd10 mutation
4

Similar Publications

Adaptive evolution of stress response genes in parasites aligns with host niche diversity.

BMC Biol

January 2025

Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.

Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.

View Article and Find Full Text PDF

Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits.

Int J Mol Sci

January 2025

Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.

This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2.

View Article and Find Full Text PDF

Metallothionein rescues doxorubicin cardiomyopathy via mitigation of cuproptosis.

Life Sci

January 2025

Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:

Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.

View Article and Find Full Text PDF

The mitochondriotropic antioxidants AntiOxBEN and AntiOxCIN are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.

Biochim Biophys Acta Bioenerg

January 2025

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!