Psychiatric prognosis is a difficult problem. Making a prognosis requires looking far into the future, as opposed to making a diagnosis, which is concerned with the current state. During the follow-up period, many factors will influence the course of the disease. Combined with the usually scarcer longitudinal data and the variability in the definition of outcomes/transition, this makes prognostic predictions a challenging endeavor. Employing neuroimaging data in this endeavor introduces the additional hurdle of high dimensionality. Machine learning techniques are especially suited to tackle this challenging problem. This review starts with a brief introduction to machine learning in the context of its application to clinical neuroimaging data. We highlight a few issues that are especially relevant for prediction of outcome and transition using neuroimaging. We then review the literature that discusses the application of machine learning for this purpose. Critical examination of the studies and their results with respect to the relevant issues revealed the following: 1) there is growing evidence for the prognostic capability of machine learning-based models using neuroimaging; and 2) reported accuracies may be too optimistic owing to small sample sizes and the lack of independent test samples. Finally, we discuss options to improve the reliability of (prognostic) prediction models. These include new methodologies and multimodal modeling. Paramount, however, is our conclusion that future work will need to provide properly (cross-)validated accuracy estimates of models trained on sufficiently large datasets. Nevertheless, with the technological advances enabling acquisition of large databases of patients and healthy subjects, machine learning represents a powerful tool in the search for psychiatric biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpsc.2018.04.004 | DOI Listing |
Background: Coronary heart disease (CHD) and depression frequently co-occur, significantly impacting patient outcomes. However, comprehensive health status assessment tools for this complex population are lacking. This study aimed to develop and validate an explainable machine learning model to evaluate overall health status in patients with comorbid CHD and depression.
View Article and Find Full Text PDFPsychoneuroendocrinology
January 2025
Department of Psychiatry, University of Michigan - Michigan Medicine, USA.
Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
1School of Engineering, Brown University, Providence, Rhode Island, USA;
The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!