Broiler strain, maternal age, and incubation temperature influence embryo metabolism. Hatching eggs were obtained from young (Y; 28 to 34 wk, $\bar{\rm x}$ = 31.2 wk), mid (M; 36 to 45 wk, $\bar{\rm x}$ = 40.5 wk) and old (O; 49 to 54 wk, $\bar{\rm x}$ = 51.4 wk) Ross 708 (n = 88; Experiment 1) and Ross 308 [(n = 45; Experiment 2: (Y; 25 to 34 wk, $\bar{\rm x}$ = 30.5 wk), (M; 35 to 44 wk, $\bar{\rm x}$ = 40.2 wk), and (O; 49 to 54 wk, $\bar{\rm x}$ = 51.6 wk)] breeders. Eggs were stored for 2 to 4 d (18°C, 73% RH), and incubated for 14 d at 37.5°C and 56% RH. At 15 d (E15), 8 fertile eggs per flock age were incubated in individual metabolic chambers at 36.0, 36.5, 37.0, or 37.5°C until E21.5. Each temperature was repeated one additional time. O2 consumption and CO2 production were used to calculate embryonic heat production (EHP). Embryo temperature was measured as eggshell temperature (EST). Initial egg weight was used as a covariate; significance was assessed at P < 0.05. In Ross 708, daily EHP tended to be higher in M and O than Y treatments at E16; EHP of M was higher than Y and O eggs at E18; M and O were higher than O eggs at E19. Incubation at 37.0°C resulted in the highest EHP from E15 to E21, except at E17. Embryos at 37.5°C had reduced EHP beyond E17. Daily EST from E15 to E21 was higher at 37.5 and 37.0°C than at 36.0 and 36.5°C. In Ross 308, daily EST was highest at 37.5°C except at E20. Incubation temperature and EST were highly correlated (R2 = 0.90 to 0.89; P < 0.001). Ross 708 chicks were longer and hatched earlier at 37.0°C than at 36.0 and 37.5°C. EST and EHP increased with incubation temperature in Ross 708. In Ross 308, maternal flock age and incubation temperature did not impact EHP. However, EST was highest at 37.5°C except at E20. Ross 708 was more sensitive to incubation temperature than Ross 308.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps/pey089 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!