Background: Attenuated measles virus (MV) strains are promising agents currently being tested against solid tumors or hematologic malignancies in ongoing phase I and II clinical trials; factors determining oncolytic virotherapy success remain poorly understood, however.
Methods: We performed RNA sequencing and gene set enrichment analysis to identify pathways differentially activated in MV-resistant (n = 3) and -permissive (n = 2) tumors derived from resected human glioblastoma (GBM) specimens and propagated as xenografts (PDX). Using a unique gene signature we identified, we generated a diagonal linear discriminant analysis (DLDA) classification algorithm to predict MV responders and nonresponders, which was validated in additional randomly selected GBM and ovarian cancer PDX and 10 GBM patients treated with MV in a phase I trial. GBM PDX lines were also treated with the US Food and Drug Administration-approved JAK inhibitor, ruxolitinib, for 48 hours prior to MV infection and virus production, STAT1/3 signaling and interferon stimulated gene expression was assessed. All statistical tests were two-sided.
Results: Constitutive interferon pathway activation, as reflected in the DLDA algorithm, was identified as the key determinant for MV replication, independent of virus receptor expression, in MV-permissive and -resistant GBM PDXs. Using these lines as the training data for the DLDA algorithm, we confirmed the accuracy of our algorithm in predicting MV response in randomly selected GBM PDX ovarian cancer PDXs. Using the DLDA prediction algorithm, we demonstrate that virus replication in patient tumors is inversely correlated with expression of this resistance gene signature (ρ = -0.717, P = .03). In vitro inhibition of the interferon response pathway with the JAK inhibitor ruxolitinib was able to overcome resistance and increase virus production (1000-fold, P = .03) in GBM PDX lines.
Conclusions: These findings document a key mechanism of tumor resistance to oncolytic MV therapy and describe for the first time the development of a prediction algorithm to preselect for oncolytic treatment or combinatorial strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186520 | PMC |
http://dx.doi.org/10.1093/jnci/djy033 | DOI Listing |
Acta Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
Patients with metastatic pancreatic ductal adenocarcinoma survive longer if disease spreads to the lung but not the liver. Here we generated overlapping, multi-omic datasets to identify molecular and cellular features that distinguish patients whose disease develops liver metastasis (liver cohort) from those whose disease develops lung metastasis without liver metastases (lung cohort). Lung cohort patients survived longer than liver cohort patients, despite sharing the same tumor subtype.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biomedical Engineering and Computational Biology Program, OHSU, Portland, OR, USA.
Multiplexed tissue imaging (MTI) technologies enable high-dimensional spatial analysis of tumor microenvironments but face challenges with technical variability in staining intensities. Existing normalization methods, including z-score, ComBat, and MxNorm, often fail to account for the heterogeneous, right-skewed expression patterns of MTI data, compromising signal alignment and downstream analyses. We present UniFORM, a non-parametric, Python-based pipeline for normalizing both feature- and pixel-level MTI data.
View Article and Find Full Text PDFRadiother Oncol
January 2025
Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA. Electronic address:
Purpose: Current radiotherapy (RT) in glioblastoma (GBM) is delivered as constant dose fractions (CDF), which do not account for intratumoral-heterogeneity and radio-selection in GBM. These factors contribute to differential treatment response complicating the therapeutic efficacy of this principle. Our study aims to investigate an alternative dosing strategy to overcome radio-resistance using a novel longitudinal radiation cytotoxicity assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!