In situ transmission electron microscopic observations of redox cycling of a Ni-ScSZ cermet fuel cell anode.

Microscopy (Oxf)

International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.

Published: October 2018

In situ transmission electron microscopy (TEM) observations of a Ni(O)-Sc2O3-stabilized ZrO2 (ScSZ; 10 mol% Sc2O3, 1 mol% CeO2, 89 mol% ZrO2) anode in a solid oxide fuel cell (SOFC) have been performed at high temperatures under a hydrogen/oxygen gas atmosphere using an environmental transmission electron microscope (ETEM); the specimens were removed from cross-sections of the real SOFC by focused ion beam milling and lifting. When heating the NiO-ScSZ anode under a hydrogen atmosphere of 3 mbar in ETEM, nano-pores were formed at the grain boundaries and on the surface of NiO particles at around 400°C due to the volume shrinkage accompanying the reduction of NiO to Ni. Moreover, densification of Ni occurred when increasing the temperature from 600 to 700°C. High-magnification TEM images obtained in the early stages of NiO reduction revealed that the (111) planes of Ni grew almost parallel to the (111) planes of NiO. In the case of heating Ni-ScSZ under an oxygen atmosphere of 3 mbar in ETEM, oxidation of Ni starting from the surface of the particles occurred above 300°C. All Ni particles became polycrystalline NiO after the temperature was increased to 800°C. Volume expansion/contraction by mass transfer to the outside/inside of the Ni particles in the anode during repeated oxidation/reduction seems to result in the agglomeration of Ni catalysts during long-term SOFC operation. We emphasize that our in situ TEM observations will be applied to observe electrochemical reactions in SOFCs under applied electric fields.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jmicro/dfy025DOI Listing

Publication Analysis

Top Keywords

transmission electron
12
situ transmission
8
fuel cell
8
tem observations
8
atmosphere mbar
8
mbar etem
8
111 planes
8
nio
5
electron microscopic
4
microscopic observations
4

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

A protein corona is present on any nanoparticle (NP) entering biological fluids; however, the existence of a natural protein corona on natural NPs has not been experimentally confirmed. We used our previously developed photomodification method to fix the natural corona on "biological nanoparticles" (bio-NPs) in fetal bovine serum and newborn bovine serum; native sera served as a control. To isolate photomodified bio-NPs, we used ultracentrifugation (UC), sucrose gradient (12%, 30%, and 50%), and sucrose cushion (30%) methods.

View Article and Find Full Text PDF

Live human brain tissues provide unique opportunities for understanding the physiology and pathophysiology of synaptic transmission. Investigations have been limited to anatomy, electrophysiology, and protein localization-while crucial parameters such as synaptic vesicle dynamics were not visualized. Here we utilize zap-and-freeze time-resolved electron microscopy to overcome this hurdle.

View Article and Find Full Text PDF

spores are essential for initiation, recurrence and transmission of the disease. The spore surface layers are composed of an outermost exosporium layer that surrounds another proteinaceous layer, the spore coat. These spore surfaces layers are responsible for initial interactions with the host and spore resistance properties contributing to transmission and recurrence of CDI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!