More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2018.05.018 | DOI Listing |
J Eur Acad Dermatol Venereol
January 2025
Pathology Department, IHP Group, Nantes, France.
Background: There is a need to improve risk stratification of primary cutaneous melanomas to better guide adjuvant therapy. Taking into account that haematoxylin and eosin (HE)-stained tumour tissue contains a huge amount of clinically unexploited morphological informations, we developed a weakly-supervised deep-learning approach, SmartProg-MEL, to predict survival outcomes in stages I to III melanoma patients from HE-stained whole slide image (WSI).
Methods: We designed a deep neural network that extracts morphological features from WSI to predict 5-y overall survival (OS), and assign a survival risk score to each patient.
CNS Neurosci Ther
January 2025
Department of Radiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
Aims: To develop a transformer-based generative adversarial network (trans-GAN) that can generate synthetic material decomposition images from single-energy CT (SECT) for real-time detection of intracranial hemorrhage (ICH) after endovascular thrombectomy.
Materials: We retrospectively collected data from two hospitals, consisting of 237 dual-energy CT (DECT) scans, including matched iodine overlay maps, virtual noncontrast, and simulated SECT images. These scans were randomly divided into a training set (n = 190) and an internal validation set (n = 47) in a 4:1 ratio based on the proportion of ICH.
Med Phys
January 2025
Department of Radiation Oncology, Duke University, North Carolina, USA.
Background: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.
Purpose: To facilitate the clinical treatment planning automation of breast radiation therapy, we utilized reinforcement learning (RL) to develop an auto-planning tool that iteratively edits the fluence maps under the guidance of clinically relevant objectives.
Neurosurg Rev
January 2025
Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcomes can play a critical role in vestibular schwannomas (VSs) patient care. Several studies have developed machine learning (ML)-based models in predicting FN outcomes following resection of VS.
View Article and Find Full Text PDFPediatr Radiol
January 2025
Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
Background: Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!