In the present work the application of novel technique was highlighted for reduction of adsorbent content in recovery process of waste motor oil by effective acidification. The effects of acidification factors such as acid proportions, adsorbent dose, powder/acid ratio and residence time were analyzed on removal of contaminates from waste oil. Acetic, hydrochloric and sulfuric acids were mixed according to the statistical mixture design algorithm to prepare acidification agents. The dry original clay was submitted into the prepared acidic solutions. The designed instrumental setup allowed the preparation of nano-porous powders where the controlled factors were residence time. The distillation of waste oil was carried out in the industrial scale. The significance of independent variables and their interactions were tested by blending the obtained powders with distillated oil and then the adsorption was evaluated, spectrophotometrically. The experimental results revealed the region in which the optimum regeneration of waste oil is obtainable. In order to well understand the role of nano-structured material on regeneration, the adsorbents were characterized through X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area measurement and scanning electron microscopy. The employment of acetic acid in combination with sulfuric acid plays an effective role in development porous structure and improvement of contaminant adsorption. The powder produced in optimum condition contains nano-pores with diameter about 11 nm. The employment of this technique provides a potential for reduction of adsorbent content, 33.3 wt%. Finally, it was demonstrated that the efficiency of prepared adsorbent supports further development for commercial application purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2018.05.056DOI Listing

Publication Analysis

Top Keywords

adsorbent content
12
waste oil
12
waste motor
8
motor oil
8
effective acidification
8
reduction adsorbent
8
residence time
8
oil
6
waste
5
management adsorbent
4

Similar Publications

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

Influencing factors and quantitative prediction of gas content of deep marine shale in Luzhou block.

Sci Rep

January 2025

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.

The exploration and development of deep marine shale gas has made significant breakthroughs, but factors influencing gas contents of deep marine shale are elusive, and quantitative prediction methods of gas content needs to be refined urgently. In this study, the deep marine shale of Longmaxi Formation in Luzhou area was taken as an example, vitrinite reflectance analysis, kerogen microscopy experiment, TOC content analysis, mineral composition analysis, gas content measurement, isothermal adsorption experiment, physical property analysis and argon ion polishing scanning electron microscopy experiment were carried out to find out factors affecting the gas content of deep marine shale, and a gas content prediction model has been worked out. Conclusions below have been reached: the content of adsorbed gas is mainly affected by Ro, TOC content, porosity, water saturation, clay mineral content, formation temperature and pressure; the content of free gas is mainly controlled by porosity, water saturation, formation temperature and pressure; according to the prediction models, the adsorbed gas content, free gas content and total gas content of each well were quantitatively calculated, and the study area was divided into Class I (with a total gas content ≥ 11 m/t), Class II (with a total gas content between 9 m/t and 11 m/t), and Class III (with a total gas content < 9 m/t) gas-bearing areas.

View Article and Find Full Text PDF

A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.

View Article and Find Full Text PDF

Mechanism of nonhydrated phospholipid removal in soybean oil using aminopolycarboxylic acid ligands.

Food Chem

January 2025

Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Herein, nonhydrated phospholipids (NHPs) were removed from soybean oil using three silica adsorbents modified using aminopolycarboxylic acid ligands. The removal rate of NHPs was 62.98 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!