The aim of this study was to optimize the dispersive liquid-liquid microextraction (DLLME) parameters for simultaneous analysis through DLLME-gas chromatography-mass spectrometry (GC-MS) of six iodo-trihalomethanes, four haloacetonitriles, and one halonitromethane, which are residual disinfection products found in drinking water. Eleven disinfection by-product (DBPs) remaining in aqueous samples were extracted and concentrated using a simple, rapid, and environmentally friendly DLLME method, and then analyzed simultaneously by GC-MS. The optimized DLLME parameters were a sample volume of 5 mL, 100 μL of dichloromethane as the extraction solvent, 1 mL of methanol as the dispersion solvent, an extraction time of 60 s, and 1.5 g of sodium chloride for the salting out effect. The enrichment factor values obtained using the established DLLME-GC-MS method were 19.8-141.5, and the limit of detection and limit of quantification were 0.22-1.19 μg/L and 0.75-3.98 μg/L, respectively. The calibration curves had correlation coefficients (r) of 0.9958-0.9992 in the concentration range of 0.5-40 μg/L, and they exhibited good linearity in quantitative analysis. This new method could be useful for analyzing eleven DBPs that remain in drinking water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.05.077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!