Background: Bloodstream infections are a major cause of death with increasing incidence and severity. Blood cultures are still the reference standard for microbiological diagnosis, but are rather slow. Molecular methods can be used as add-on complementary assays. They can be useful to speed up microbial identification and to predict antimicrobial susceptibility, applied to direct blood samples or positive blood cultures.
Aim: To review recent developments in molecular-based diagnostic platforms used for the identification of bloodstream infections, with a focus on assays performed directly on blood samples and positive blood cultures.
Sources: Peer reviewed articles, conference abstracts, and manufacturers' websites.
Content: We give an update on recent developments of molecular methods in diagnosing BSIs. We first describe the currently available molecular methods to be used for positive blood cultures including: a) in situ hybridization-based methods; b) DNA-microarray-based hybridization technology; c) nucleic acid amplification-based methods; and d) combined methods. Subsequently, molecular methods applied directly to whole blood samples are discussed, including the use of nucleic acid amplification-based methods, T2 magnetic resonance-based methods, and metagenomics for diagnosing BSIs.
Implications: Advances in molecular-based methods complementary to conventional blood culture diagnostics and antimicrobial stewardship programmes may optimize infection management by allowing rapid identification of pathogens and relevant antimicrobial resistance genes. Rapid diagnosis of the causing microorganism and relevant resistance determinants is important for early administration and modification of appropriate antimicrobial therapy. Ultimately, this may lead to improved quality and cost-effectiveness of health care, as well as reduced antimicrobial resistance selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmi.2018.05.007 | DOI Listing |
IUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFBackground: LIGHT (oLaparib In HRD-Grouped Tumor types; NCT02983799) prospectively evaluated olaparib treatment in patients with platinum-sensitive relapsed ovarian cancer (PSROC) assigned to cohorts by known BRCA mutation (BRCAm) and homologous recombination deficiency (HRD) status: germline BRCAm (gBRCAm), somatic BRCAm (sBRCAm), HRD-positive non-BRCAm, and HRD-negative. At the primary analysis, olaparib treatment demonstrated activity across all cohorts, with greatest efficacy in terms of objective response rate and progression-free survival observed in the g/sBRCAm cohorts. The authors report final overall survival (OS).
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy.
Previous studies in sports science suggested that regular exercise has a positive impact on human health. However, the effects of endurance sports and their underlying mechanisms are still not completely understood. One of the main debates regards the modulation of immune dynamics in high-intensity exercise.
View Article and Find Full Text PDFJ Med Virol
January 2025
Centro Internacional de Vacunas, Cali, Colombia.
A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!