A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkv34sb31vjnajbl2e5sdu5mac2it2uj0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developments in Biodosimetry Methods for Triage With a Focus on X-band Electron Paramagnetic Resonance In Vivo Fingernail Dosimetry. | LitMetric

AI Article Synopsis

  • There is a need for effective methods to quickly and accurately measure individual radiation doses during radiological or nuclear emergencies, particularly using in vivo X-band electron paramagnetic resonance dosimetry to analyze signals in fingernails.* -
  • Development focuses on creating specialized resonators that sample larger volumes but restrict measurements to the nail plate, and also tackle challenges like interference from other signals and calibration issues.* -
  • Initial tests with different resonator designs on nail models and healthy volunteers indicate good sensitivity for detecting radiation signals, but further research is necessary to refine the technology and assess its viability for real-world triage applications.*

Article Abstract

Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967651PMC
http://dx.doi.org/10.1097/HP.0000000000000874DOI Listing

Publication Analysis

Top Keywords

radiation-induced signal
28
signal measurements
16
nail plate
12
surface resonator
12
resonator array
12
vivo nail
12
signal
9
x-band electron
8
electron paramagnetic
8
paramagnetic resonance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!