This study aimed to identify immunological biomarkers for prolonged occupational radiation exposure and thus studied a random sample of the Mayak Production Association worker cohort (91 individuals). The control group included 43 local individuals never employed at the Mayak Production Association. To identify biomarkers, two groups of workers were formed: the first one included workers chronically exposed to external gamma rays at cumulative doses of 0.5-3.0 Gy (14 individuals); the second one included workers exposed to combined radiation-external gamma rays at doses ranging from 0.7 to 5.1 Gy and internal alpha radiation from incorporated plutonium with 0.3-16.4 kBq body burden (77 individuals). The age range of the study individuals was 66-91 y. Peripheral blood serum protein concentrations of cytokines, immunoglobulins, and matrix metalloproteinase-9 were analyzed using enzyme-linked immunoassay following the manufacturer's protocol. Flow cytometry was used to analyze levels of various lymphocyte subpopulations. The findings of the current study demonstrate that some immunological characteristics may be considered as biomarkers of prolonged chronic radiation exposure for any radiation type (in the delayed period after the exposure) based on fold differences from controls: M immunoglobulin fold differences were 1.75 ± 0.27 (p = 0.0001) for external gamma-ray exposure and 1.50 ± 0.27 (p = 0.0003) for combined radiation exposure; matrix metalloproteinase-9 fold differences were 1.5 ± 0.22 (p = 0.008) for external gamma-ray exposure and 1.69 ± 0.24 (p = 0.00007) for combined radiation exposure; A immunoglobulin fold differences were 1.61 ± 0.27 (p = 0.002) for external gamma-ray exposure and 1.56 ± 0.27 (p = 0.00002) for combined radiation exposure; relative concentration of natural killer cell fold differences were 1.53 ± 0.23 (p = 0.01) for external gamma-ray exposure and 1.35 ± 0.22 (p = 0.001) for combined radiation exposure; and relative concentration of T-lymphocytes fold differences were 0.89 ± 0.04 (p = 0.01) for external gamma-ray exposure and 0.95 ± 0.05 (p = 0.003) for combined radiation exposure. Based on fold differences from controls, interferon-gamma (3.50 ± 0.65, p = 0.031), transforming growth factor-beta (2.91 ± 0.389, p = 0.026), and relative blood serum levels of T-helper cells (0.90 ± 0.065, p = 0.02) may be used as immunological markers of chronic external gamma-ray exposure. Moreover, there was a significant inverse linear association of relative concentration of T-helper cells with dose from external gamma rays accumulated over an extended period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HP.0000000000000855 | DOI Listing |
J Radiol Prot
January 2025
School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA.
Historically, radiation exposure to mineral sands workers arose primarily from intake of thorium associated with monazite dust generated in mineral separation plants. Research investigations in the 1990s provided greater insight into the characteristics of inhaled thorium ore dust and bioassay studies inferred that some workers had accumulated significant lung burdens of thorium. Recent changes to biokinetic models have increased the radiation dose assessed to arise from thorium intake, raising questions on the appropriateness of current assumptions used in exposure assessment and feasibility of further bioassay research.
View Article and Find Full Text PDFJ Interv Card Electrophysiol
January 2025
Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.
Background: The conventional mapping approach for the atrioventricular accessory pathway (AP) involves point-by-point mapping to identify the connection sites of the AP to the atria or ventricle and accurate interpretation of local electrograms. Omnipolar mapping technology (OMT) explains how vector and wave speed are produced by using both unipolar and bipolar signals to obtain omnipolar signals, directions, and conduction velocity. The aim of this study is to verify the effectiveness of OMT for catheter ablation of AP.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.
View Article and Find Full Text PDFSci Prog
January 2025
National Fire Research Institute, Asan-si, Republic of Korea.
Firefighters are exposed to the risk of burns at fire scenes. In 2020, the National Fire Agency of the Republic of Korea surveyed 50,527 firefighters and identified 242 burn-related incidents. The body parts affected by these burns were the hands (28.
View Article and Find Full Text PDFCureus
December 2024
Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Kuantan, MYS.
In abdominal X-ray examinations, radiosensitive organs such as the gonads within or near the imaging region are at risk of radiation exposure. Minimizing the dose to these organs is crucial to reducing unnecessary radiation. This study utilized optically stimulated luminescence dosimeters (OSLDs) to measure the radiation dose to the male gonads at varying kilovoltage peak (kVp) settings while keeping the milliampere-seconds (mAs) constant across different radiographic projections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!