Herein, we report on the phase behaviour of a binary liquid mixture composed of methanol (MeOH) and the thermotropic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The corresponding phase diagram combines features of a conventional liquid-liquid mixture with characteristics that are particular to the nematic liquid crystal. We observe four arrangements as a function of composition and temperature, namely monophasic isotropic, monophasic nematic, biphasic isotropic-isotropic and biphasic isotropic-nematic, with an upper critical solution temperature of 24.4 ± 0.5 °C. The interplay of nematogenic and non-nematogenic species offers tunability of phase mixing and phase composition in an accessible temperature window and provides novel routes for the extraction of target compounds, here exemplarily shown for Crystal Violet, Doxorubicin, Eosin Y, Rhodamine 6G and Sudan IV.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8sm00327kDOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
phase behaviour
8
binary liquid
8
liquid mixture
8
thermotropic liquid
8
phase
5
liquid
5
behaviour applications
4
applications binary
4
mixture methanol
4

Similar Publications

Nematic liquid crystal flow driven by time-varying active surface anchoring.

Soft Matter

January 2025

Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.

We demonstrate the generation of diverse material flow regimes in nematic liquid cells as driven by time-variable active surface anchoring, including no-net flow, oscillatory flow, steady flow, and pulsating flow. Specifically, we numerically simulate a passive nematic fluid inside a cell bounded with two flat solid boundaries at which the time-dependent anchoring is applied with the dynamically variable surface anchoring easy axis. We show that different flow regimes emerge as the result of different anchoring driving directions ( co-rotating or counter-rotating) and relative phase of anchoring driving.

View Article and Find Full Text PDF

Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.

The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.

View Article and Find Full Text PDF

Investigation of the Ocular Response and Corneal Damage Threshold of Exposure to 28 GHz Quasi-millimeter Wave Exposure.

Health Phys

January 2025

Division of Vision Research for Environmental Health, Medical Research Institute and Department of Ophthalmology, Kanazawa Medical University, Kahoku, Japan.

Electromagnetic radiation energy at millimeter wave frequencies, typically 30 GHz to 300 GHz, is ubiquitously used in society in devices for telecommunications; radar and imaging systems for vehicle collision avoidance, security screening, and medical equipment; scientific research tools for spectroscopy; industrial applications for non-destructive testing and precise measurement; and military and defense applications. Understanding the biological effects of this technology is essential. We have been investigating ocular responses and damage thresholds comparing various frequencies using rabbit eyes and dedicated experimental apparatus.

View Article and Find Full Text PDF

The Effects of Morphology and Hydration on Anion Transport in Self-Assembled Nanoporous Membranes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.

View Article and Find Full Text PDF

Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!