For nanoparticles active for chemical and energy transformations in static liquid environment, chemistries of surface or near-surface regions of these catalyst nanoparticles in liquid are crucial for fundamentally understanding their catalytic performances at a molecular level. Compared to catalysis at a solid-gas interface, there is very limited information on the surface of these catalyst nanoparticles under a working condition or during catalysis in liquid. Photoelectron spectroscopy is a surface-sensitive technique; however, it is challenging to study the surfaces of catalyst nanoparticles dispersed in static liquid because of the short inelastic mean free path of photoelectrons traveling in liquid. Here, we report a method for tracking the surface of nanoparticles dispersed in static liquid by employing graphene layers as an electron-transparent membrane to separate the static liquid containing a solvent, catalyst nanoparticles, and reactants from the high-vacuum environment of photoelectron spectrometers. The surfaces of Ag nanoparticles dispersed in static liquid sealed in such a graphene membrane liquid cell were successfully characterized using a photoelectron spectrometer equipped with a high vacuum energy analyzer. With this method, the surface of catalyst nanoparticles dispersed in liquid during catalysis at a relatively high temperature up to 150 °C can be tracked with photoelectron spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b00806DOI Listing

Publication Analysis

Top Keywords

static liquid
24
nanoparticles dispersed
20
catalyst nanoparticles
20
dispersed static
16
photoelectron spectroscopy
12
liquid
11
nanoparticles
9
surface catalyst
8
static
6
dispersed
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!