Block copolymer materials have been considered as promising candidates to fabricate gas separation membranes. This microphase separation affects the polymer chain packing density and molecular separation efficiency. Here, we demonstrate a method to template microphase separation within a thin composite Pebax membrane, through the controllable self-assembly of one-dimensional halloysite nanotubes (HNTs) within the thin film via the solution-casting technique. Crystallization of the polyamide component is induced at the HNT surface, guiding subsequent crystal growth around the tubular structure. The resultant composite membrane possesses an ultrahigh selectivity (up to 290) for the CO/N gas pair, together with a moderate CO permeability (80.4 barrer), being the highest selectivity recorded for Pebax-based membranes, and it easily surpasses the Robeson upper bound. The templated microphase separation concept is further demonstrated with the nanocomposite hollow fiber gas separation membranes, showing its effectiveness of promoting gas selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b03787 | DOI Listing |
Polymers (Basel)
January 2025
School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Sanderson Building, King's Buildings, Edinburgh EH9 3FB, UK.
The phase separation of high-density polyethylene (HDPE)-polypropylene (PP) blends was studied using atomic force microscopy in tapping mode to obtain height and phase images. The results are compared with those from scanning electron microscopy imaging and are connected to the thermomechanical properties of the blends, characterised through differential scanning calorimetry, dynamic mechanical analysis (DMA), and tensile testing. Pure PP, as well as 10:90 and 20:80 weight ratio HDPE-PP blends, showed a homogeneous morphology, but the 25:75 HDPE-PP blends exhibited a sub-micrometre droplet-matrix structure, and the 50:50 HDPE-PP blends displayed a more complex co-continuous nano/microphase-separated structure.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:
Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053, Pau, France.
The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!