Purpose: Acute hyperglycemia in patients with traumatic brain injury correlates with a poor neurological outcome. We investigated the endothelium function of rat cerebral arterioles during acute hyperglycemia and after reducing the glucose levels using insulin. We also examined whether or not oxidative stress was involved in the cerebral arteriole response to acute hyperglycemia.
Methods: In isoflurane-anesthetized, mechanically ventilated rats, we used closed cranial window preparation to measure the changes in the pial arteriolar diameter following the topical application of acetylcholine (ACh) or adenosine. We examined the pial arteriolar vasodilator response before hyperglycemia, during hyperglycemia, and after reducing the glucose level using insulin. After intravenous pretreatment with an NADPH oxidase inhibitor (apocynin or diphenylene iodonium), we reexamined the pial arteriolar vasodilator response following the topical application of ACh.
Results: Under control conditions, the topical application of ACh dose-dependently dilated the cerebral arterioles. The vasodilatory responses to topical ACh were impaired during hyperglycemia and improved after the administration of insulin. The vasodilatory responses to topical adenosine were not affected by the glucose levels. In the apocynin or diphenylene iodonium pretreatment group, the topical application of ACh dilated the cerebral arterioles during hyperglycemia.
Conclusion: Acute hyperglycemia induces a dysfunction of the endothelium-dependent vasodilation of rat cerebral arterioles. The dysfunction can be reversed by improving the acute hyperglycemia and it can be prevented entirely by the administration of NADPH oxidase inhibitors. These results could suggest that controlling the glucose levels works protectivity to endothelium function of cerebral arterioles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00540-018-2507-7 | DOI Listing |
Microcirculation
January 2025
Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
Objective: Cerebral blood flow (CBF) decline is increasingly recognized as an area of importance for targeting neurodegenerative disorders, yet full understanding of the mechanisms that underlie CBF changes are lacking. Animal models are crucial for expanding our knowledge as methods for studying global CBF and neurovascular coupling in humans are limited and require expensive specialized scanners.
Methods: Use of appropriate animal models can increase our understanding of cerebrovascular function, so we have combined chronic cranial windows with in vivo two-photon and laser speckle microscopy and ex vivo capillary-parenchymal arteriole (CaPA) preparations.
Int J Mol Sci
December 2024
Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.
Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Neurology, Henan Province People's Hospital, Xinxiang Medical University, Zhengzhou, China.
Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.
View Article and Find Full Text PDFBiophys J
December 2024
Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont. Electronic address:
Amyloid beta (Aβ) peptide accumulation on blood vessels in the brain is a hallmark of neurodegeneration. While Aβ peptides constrict cerebral arteries and arterioles, their impact on capillaries is less understood. Aβ was recently shown to constrict brain capillaries through pericyte contraction, but whether-and if so how-Aβ affects endothelial cells (ECs) remains unknown.
View Article and Find Full Text PDFBrain
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, 55905 USA.
Vasculitic neuropathy is caused by inflammatory destruction of nerve blood vessels resulting in nerve ischemia. Nerve vasculitis can be divided into two categories based on vessel size - large arteriole vasculitis (≥75 µm) and microvasculitis (<75 µm). Herein, we characterize the clinical features of nerve large-arteriole vasculitis compared to nerve microvasculitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!