Preeclampsia, fetal growth restriction, and miscarriage remain important causes of maternal and perinatal morbidity and mortality. These complications are associated with reduced numbers of a specialized T lymphocyte subset called regulatory T cells (Treg cells) in the maternal circulation, decidua, and placenta. Treg cells suppress inflammation and prevent maternal immunity toward the fetus, which expresses foreign paternal alloantigens. Treg cells are demonstrated to contribute to vascular homeostasis, but whether Treg cells influence the vascular adaptations essential for a healthy pregnancy is unknown. Thus, using a mouse model of Treg-cell depletion, we investigated the hypothesis that depletion of Treg cells would cause increased inflammation and aberrant uterine artery function. Here, we show that Treg-cell depletion resulted in increased embryo resorption and increased production of proinflammatory cytokines. Mean arterial pressure exhibited greater modulation by NO in Treg cell-deficient mice because the L-N-nitroarginine methyl ester-induced increase in mean arterial pressure was 46% greater compared with Treg cell-replete mice. Uterine artery function, which is essential for the supply of nutrients to the placenta and fetus, demonstrated dysregulated hemodynamics after Treg-cell depletion. This was evidenced by increased uterine artery resistance and pulsatility indices and enhanced conversion of bET-1 (big endothelin-1) to the active and potent vasoconstrictor, ET-1 (endothelin-1). These data demonstrate an essential role for Treg cells in modulating uterine artery function during pregnancy and implicate Treg-cell control of maternal vascular function as a key mechanism underlying normal fetal and placental development.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10858DOI Listing

Publication Analysis

Top Keywords

treg cells
24
uterine artery
20
treg-cell depletion
12
artery function
12
cells
8
regulatory cells
8
treg
8
arterial pressure
8
uterine
5
artery
5

Similar Publications

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.

View Article and Find Full Text PDF

CX3CR1-transduced regulatory T cells (Tregs) have shown potential in reducing neuroinflammation by targeting microglial activation. Reactive microglia are implicated in neurological disorders, and CX3CR1-CX3CL1 signaling modulates microglial activity. The ability of CX3CR1-transduced Tregs to inhibit LPS-induced neuroinflammation was assessed in animal models.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right heart failure, with emerging evidence suggesting a key role for immune dysregulation in its pathogenesis. This study aimed to assess the involvement of lymphocytes, particularly regulatory T cells (Tregs), and the expression of immune checkpoint molecules PD-1 and PD-L1 on peripheral blood subpopulations in patients diagnosed with PAH. The study involved 25 patients; peripheral blood mononuclear cells were isolated and subsequently analyzed using flow cytometry to quantify the Treg cell percentage and evaluate PD-1 and PD-L1 expression across the T and B cells.

View Article and Find Full Text PDF

Blocking the Sphingosine-1-Phosphate Receptor 2 (S1P) Reduces the Severity of Collagen-Induced Arthritis in DBA-1J Mice.

Int J Mol Sci

December 2024

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.

The amount of sphingosine 1-phosphate (S1P) found in the synovial tissue of individuals with rheumatoid arthritis is five times greater than that in those with osteoarthritis. Our study aims to determine whether inhibiting S1P can mitigate collagen-induced rheumatoid arthritis (CIA) by using an S1P antagonist, JTE-013, alongside DBA-1J wild-type (WT) and knock-out (KO) mice. CIA causes increases in arthritis scores, foot swelling, synovial hyperplasia, pannus formation, proteoglycan depletion, cartilage damage, and bone erosion, but these effects are markedly reduced when JTE-013 is administered to WT mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!