Mammalian coat color is one of the first phenotypic changes resulting from positive selection by humans, and it serves important roles in genetic and evolutionary processes. Among them, horses show a broad variety of coat color patterns, based on which it is difficult to distinguish the real phenotypes, resulting in confused records in horse breed registration. Thus, research in the genetic mechanisms on the development of coat color patterns is significant in horse reproduction and breeding. With the recent establishment of genomics and sequencing technologies, there are significant advances in research in the genetics of horse coat colors, which demonstrate that special coat colors could be associated with certain diseases. In this review, we classify horse coat colors from the perspective of genetics, and summarize the recent research progresses of the associated genes and molecular mechanisms on horse coat color development and its application, thereby providing references to further systematic research on horse coat color patterns and their practical uses in horse breeding.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.17-371DOI Listing

Publication Analysis

Top Keywords

coat color
24
horse coat
20
color patterns
12
coat colors
12
coat
9
horse
8
color
6
[overview genetic
4
genetic control
4
control horse
4

Similar Publications

Identifying Candidate Genes Related to Soybean () Seed Coat Color via RNA-Seq and Coexpression Network Analysis.

Genes (Basel)

January 2025

College of Plant Science and Technology, Beijing Key Laboratory of New Agricultural Technology in Agriculture Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing 102206, China.

Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare.

View Article and Find Full Text PDF

Morphological diversity variation of seed traits among 587 germplasm resources of Medicago Genus and 32 germplasm resources of Trigonella Genus.

Sci Rep

January 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Germplasm resources within the Medicago genus are highly regarded for their value as forage crops and their critical roles in nitrogen cycling, ecosystem restoration, and soil structure improvement. Therefore, understanding the diversity of seed morphology in this genus is essential for advancing its development and utilization. This study analyzed seed samples from 587 germplasm accessions representing 77 species within Medicago genus, as well as 32 accessions from 21 species within the closely related genus Trigonella.

View Article and Find Full Text PDF

PSC1, a basic/helix-loop-helix transcription factor controlling the purplish-red testa trait in peanut.

J Integr Plant Biol

January 2025

College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou, 450046, China.

Seed color is a key agronomic trait in crops such as peanut, where it is a vital indicator of both nutritional and commercial value. In recent years, peanuts with darker seed coats have gained market attention due to their high anthocyanin content. Here, we used bulk segregant analysis to identify the gene associated with the purplish-red coat trait and identified a novel gene encoding a basic/helix-loop-helix transcription factor, PURPLE RED SEED COAT1 (PSC1), which regulates the accumulation of anthocyanins in the seed coat.

View Article and Find Full Text PDF

Background And Aim: Coat color is a phenotypic trait that is affected by many functional genes. In addition, coat color is an important characteristic of breeds in livestock. This study aimed to determine functional genes for coat color patterns in Sumatran native cattle in Indonesia using a genome-wide association study method.

View Article and Find Full Text PDF

Development of a novel and affordable point-of-care kit for rapid detection of urea and glucose adulteration in cow milk.

Anal Methods

January 2025

Environmental Biotechnology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.

The increasing global population has raised the demand for cow milk, leading to its adulteration with harmful substances, including urea and glucose, that cause damage to humans when consumed regularly. Hence, this study started with predicting urea and glucose toxicity using ProTox-III software, wherein the results revealed that urea belongs to class IV with an LD value of 6350 mg kg and glucose belongs to class VI with an LD value of 23 000 mg kg. Then, a qualitative colorimetric kit and Fourier-transform infrared (FTIR) spectroscopy were used for the preliminary detection of urea and glucose in cow milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!