A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monodisperse and brightly luminescent CsPbBr/CsPbBr perovskite composite nanocrystals. | LitMetric

Monodisperse and brightly luminescent CsPbBr/CsPbBr perovskite composite nanocrystals.

Nanoscale

Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.

Published: May 2018

The microscale composite structure strategy of embedding CsPbBr3 nanocrystals (NCs) in the microscale Cs4PbBr6 matrix (CPB113/CPB416) has successfully demonstrated its ability to resolve the fluorescence quenching of perovskite NCs in the solid agglomeration state due to the loss of quantum confinement. Unfortunately, the controllable synthesis of monodisperse nanoscale composites with bright emission in the solid state remains a great challenge. Here, we present for the first time a novel supersaturated recrystallization process to controllably synthesize monodisperse CPB113/CPB416 composite NCs with bright emission in the solid form, where CsPbBr3 NCs were uniformly embedded in the nano hexagonal Cs4PbBr6 matrix. The existence of 2-methylimidazole (MeIm) not only can control the composition rate of CsPbBr3 to Cs4PbBr6, the size and dispersity of CsPbBr3 in the composite NCs but can also help controllably obtain the monodisperse and hexagonal Cs4PbBr6 matrix. The as-prepared composite structure can effectively prevent CsPbBr3 fluorescence quenching and make the composite NCs have a high photoluminescence quantum yield (PLQY) of 83%. In addition, we obtained tunable blue to red emitting composite NCs by varying the halide salts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr01266kDOI Listing

Publication Analysis

Top Keywords

composite ncs
16
cs4pbbr6 matrix
12
composite structure
8
fluorescence quenching
8
bright emission
8
emission solid
8
hexagonal cs4pbbr6
8
composite
7
ncs
7
cspbbr3
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!