The immune response to pathogens varies substantially among people. Whereas both genetic and nongenetic factors contribute to interperson variation, their relative contributions and potential predictive power have remained largely unknown. By systematically correlating host factors in 534 healthy volunteers, including baseline immunological parameters and molecular profiles (genome, metabolome and gut microbiome), with cytokine production after stimulation with 20 pathogens, we identified distinct patterns of co-regulation. Among the 91 different cytokine-stimulus pairs, 11 categories of host factors together explained up to 67% of interindividual variation in cytokine production induced by stimulation. A computational model based on genetic data predicted the genetic component of stimulus-induced cytokine production (correlation 0.28-0.89), and nongenetic factors influenced cytokine production as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022810 | PMC |
http://dx.doi.org/10.1038/s41590-018-0121-3 | DOI Listing |
Alzheimers Dement
December 2024
Shoolini University, Solan, Himachal Pradesh, India.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline, neuroinflammation, and mitochondrial dysfunction. In Alzheimer's, abnormal Mitochondrial Permeability Transition Pore (mPTP) activity may contribute to mitochondrial dysfunction and neuronal damage. Withanolide A, a naturally occurring compound derived from Withania somnifera, have shown potential neuroprotective effects in various neurological disorders.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia.
The outbreak of COVID-19 has opened up new avenues for exploring the importance of vitamin D in immunity, in addition to its role in calcium absorption. Recently, vitamin D supplementation has been found to enhance T regulatory lymphocytes, which are reduced in individuals with COVID-19. Increased risk of pneumonia and increases in inflammatory cytokines have been reported to be major threats associated with vitamin-D deficiency.
View Article and Find Full Text PDFCureus
December 2024
Anatomy/Embryology, Edward Via College of Osteopathic Medicine - Virginia, Blacksburg, USA.
Introduction Quaternary ammonium compounds (QACs) are the active ingredient in the majority of disinfectants approved for use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19). Although widely used, they have been linked to infertility and birth defects in animals, and have been shown to increase proinflammatory cytokines, decrease mitochondrial function, and disrupt sterol biosynthetic pathways in a dose-dependent manner in humans. This study examined if there was an increased use of QAC-based disinfectants among healthcare settings in response to the COVID-19 pandemic and aims to bring to light the negative health outcomes that this rise in QAC exposure may pose.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang, Hangzhou, China.
Background: Skin pigmentation disorders may increase patients' psychological burdens. Consequently, they are increasingly attracting attention. Dermal fibroblasts have been shown to regulate pigmentation by secreting soluble factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!