Topography of epithelial-mesenchymal plasticity.

Proc Natl Acad Sci U S A

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milano, Italy

Published: June 2018

The transition between epithelial and mesenchymal states has fundamental importance for embryonic development, stem cell reprogramming, and cancer progression. Here, we construct a topographic map underlying epithelial-mesenchymal transitions using a combination of numerical simulations of a Boolean network model and the analysis of bulk and single-cell gene expression data. The map reveals a multitude of metastable hybrid phenotypic states, separating stable epithelial and mesenchymal states, and is reminiscent of the free energy measured in glassy materials and disordered solids. Our work not only elucidates the nature of hybrid mesenchymal/epithelial states but also provides a general strategy to construct a topographic representation of phenotypic plasticity from gene expression data using statistical physics methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003369PMC
http://dx.doi.org/10.1073/pnas.1722609115DOI Listing

Publication Analysis

Top Keywords

epithelial mesenchymal
8
mesenchymal states
8
construct topographic
8
gene expression
8
expression data
8
topography epithelial-mesenchymal
4
epithelial-mesenchymal plasticity
4
plasticity transition
4
transition epithelial
4
states
4

Similar Publications

Background: This study aimed to investigate the potential utility of Epithelial-mesenchymal transition (EMT) signaling cell detection in the early diagnosis of cervical lesions.

Methods: Enrichment of cervical epithelial cells was carried out using a calibrated membrane with 8-μm diameter pores. RNA-in situ hybridization (RNA-ISH) was employed to detect and characterize EMT cells utilizing specific EMT markers.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Most pancreatic cancer patients are diagnosed at advanced stages, with poor survival rates and drug resistance making pancreatic cancer one of the highest causes of cancer death in the UK. Understanding the underlying mechanism behind its carcinogenesis, metastasis and drug resistance has become an essential task for researchers. We have discovered that a well-established tumour suppressor, EPLIN, has an oncogenic rather than suppressive role in pancreatic cancer.

View Article and Find Full Text PDF

Solute transport family 7A member 7 (SLC7A7) mutations contribute to lysinuric protein intolerance (LPI), which is the mechanism of action that has been extensively studied. In colorectal cancer (CRC), SLC7A7 appears to play a role, but the features and mechanisms are not yet well understood. Survival was analyzed using the Kaplan-Meier analysis.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are multipotent adult stem cells which possess immunomodulatory and repair capabilities. In this study, we investigated whether MSC therapy could modulate inflammation and lung damage in the lungs of Scnn1b-transgenic mice overexpressing the β-subunit of the epithelial sodium channel (β-ENaC), a model with features of Cystic Fibrosis lung disease. Human bone marrow derived MSC cells were intravenously delivered to mice, prior to collection of bronchoalveolar lavage (BALF) and tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!