Background: PARP1 facilitates the recovery of DNA-damaged cells by recruiting DNA damage response molecules such as γH2AX and BRCA1/2, and plays a role in resistance to antitumor therapies. Therefore, PARP inhibition being evaluated as an anti-cancer therapy. However, there are limited studies regrading PARP inhibition in osteosarcoma.
Methods: We evaluated the expression of DNA damage response molecules in 35 human osteosarcomas and investigated the effects of co-treatment of the PARP inhibitor, olaparib, and doxorubicin in osteosarcoma cells.
Results: The expression patterns of PARP1, γH2AX, BRCA1, and BRCA2 were significantly associated with shorter survival of osteosarcoma patients. In osteosarcoma cells, knock-down of PARP1 and treatment of olaparib significantly inhibited proliferation of cells and induced apoptosis. Moreover, the anti-tumor effect was more significant with co-treatment of olaparib and doxorubicin in vitro and in vivo.
Conclusions: This study suggests that combined use of a PARP inhibitor with doxorubicin, a DNA damaging agent, might be effective in the treatment of osteosarcoma patients, especially in the poor-prognostic subgroups of osteosarcoma expressing PARP1, γH2AX, or BRCA1/2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963190 | PMC |
http://dx.doi.org/10.1186/s13046-018-0772-9 | DOI Listing |
Investig Clin Urol
January 2025
Basic-Clinic Convergence Research Institute, University of Ulsan, Ulsan, Korea.
Purpose: Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.
View Article and Find Full Text PDFCA Cancer J Clin
January 2025
Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB).
View Article and Find Full Text PDFCancer Res Treat
January 2025
Cancer Research Institute, Seoul National University, Seoul, Korea.
Purpose: This study focused on combining irinotecan with Poly (ADP-ribose) polymerase (PARP) inhibitors to explore the potential for novel combination therapeutics in small cell lung cancer (SCLC).
Materials And Methods: We selected 10 different SCLC cell lines with diverse mutational backgrounds in DNA damage response (DDR) pathway genes to evaluate the efficacy of the combination of three PARP inhibitors and irinotecan. After the cells were exposed to the drugs for seven days, cell viability was measured, and a combination index was calculated.
J Hepatol
January 2025
Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:
Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!