AI Article Synopsis

  • Custom 3D-printed acetabular implants are becoming increasingly used in hip surgery, providing patient-specific solutions that enhance bone fitting without excessive bone removal.
  • A study of 46 patients showed promising mid-term results, with significant improvements in hip function scores and a restored biomechanical hip center after surgery.
  • Among the 36 patients analyzed, complications included a few revisions and some concerning radiographic findings, but overall outcomes were comparable to existing implant designs, with no revisions needed for aseptic loosening.

Article Abstract

Introduction: Custom 3D-printed acetabular implants are a new technology used in hip surgery with ever-increasing frequency. They offer patient-specific implants to optimise filling of bone defects and implant-bone contact, without the need for excessive bone resection.

Methods: This is a retrospective cohort study of 46 consecutive patients who underwent an Ossis unilateral custom 3D-printed acetabular implant. Clinical (Oxford Hip Score OHS-60), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS) and radiological (restoration of biomechanical hip centre, osteointegration, wear, heterotrophic ossification) results were assessed.

Results: Patient mean age was 68 years and follow-up was 38 months (minimum 24 months). 10 patients were excluded from the outcome analysis; 2 patients died, 1 required revision for deep infection and 7 were lost to follow-up. Of the 36 patients included, 21 had severe osteolysis. 7 were revised for infection, 3 for tumoural defects, 3 for metallosis, 1 for dysplasia and 1 for trauma (Paprosky 2a [n=6], 2b [n=2], 2c [n=5], 3a [n=6], 3b [n=11], pelvic dissociation [n=6]). OHS significantly improved postoperatively (16-8-48.4 p=0.027). Postoperative functional scores were good (WOMAC 98; HHS 79). The biomechanical hip centre was restored in all patients. 1 patient had early implant migration with subsequent stabilisation. 2 patients had radiographs concerning for failure of osteointegration. 1 patient had recurrent dislocations.

Conclusions: The mid-term results of the Ossis custom 3D-printed tri-flanged acetabular implant for the management of severe acetabular defects are encouraging. The improvement in functional scores and radiographic outcomes are comparable to similar designs. In addition, no cases have required revision for aseptic loosening.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1120700018760817DOI Listing

Publication Analysis

Top Keywords

custom 3d-printed
16
acetabular implant
12
ossis custom
8
3d-printed tri-flanged
8
tri-flanged acetabular
8
3d-printed acetabular
8
hip score
8
biomechanical hip
8
hip centre
8
required revision
8

Similar Publications

Recent focus has shifted toward refining the soft tissue emergence profile to enhance aesthetics, support peri-implant health, and ensure long-term success. Traditionally, titanium stock healing abutments or chairside-customized abutments were used to shape peri-implant tissues and develop the emergence profile for implant-supported prostheses. However, advancements in digital dentistry now allow for more precise customization and increased treatment efficiency.

View Article and Find Full Text PDF

SiN ceramic has received great attention because of its sound biological performances, which make it an attractive ceramic implant material in healthcare, particularly in orthopedic surgery. With the advancement of 3D printing technology, SiN ceramics can now be fabricated into customized implants with precise anatomical shapes, sizes, and microstructures, catering to the individual needs of patients. We, therefore, conducted a comprehensive review of how 3D printing enables complex-shaped SiN ceramic implants for clinical applications.

View Article and Find Full Text PDF

Introduction: Congenital vertebral malformations are common developmental abnormalities in screw-tailed brachycephalic dog breeds. Subsequent vertebral instability and/or vertebral canal stenosis caused by these malformations can lead to spinal cord compression manifesting in pain, paraparesis, ataxia and/or paralysis. Various methods for spinal stabilization are in common use.

View Article and Find Full Text PDF

Background: Non-invasiveness and comfort are crucial in the conservative management of distal radius and scaphoid fractures. While fiberglass casts are standard, three-dimensional (3D)-printed orthoses offer a promising alternative.

Purpose: To compare patient experiences, safety perceptions, and satisfaction between a 3D orthosis and fiberglass cast for distal radius or scaphoid fractures.

View Article and Find Full Text PDF

3D Printing Organogels with Bioderived Cyrene for High-Resolution Customized Hydrogel Structures.

Langmuir

January 2025

Surface Science and Bio-nanomaterials Laboratory, Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada.

3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!