Hyperoxia contributes to the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of infants that is characterized by interrupted alveologenesis. Disrupted angiogenesis inhibits alveologenesis, but the mechanisms of disrupted angiogenesis in the developing lungs are poorly understood. In pre-clinical BPD models, hyperoxia increases the expression of extracellular signal-regulated kinases (ERK) 1/2; however, its effects on the lung endothelial ERK1/2 signaling are unclear. Further, whether ERK1/2 activation promotes lung angiogenesis in infants is unknown. Hence, we tested the following hypotheses: (1) hyperoxia exposure will increase lung endothelial ERK1/2 signaling in neonatal C57BL/6J (WT) mice and in fetal human pulmonary artery endothelial cells (HPAECs); (2) ERK1/2 inhibition will disrupt angiogenesis in vitro by repressing cell cycle progression. In mice, hyperoxia exposure transiently increased lung endothelial ERK1/2 activation at one week of life, before inhibiting it at two weeks of life. Interestingly, hyperoxia-mediated decrease in ERK1/2 activation in mice was associated with decreased angiogenesis and increased endothelial cell apoptosis. Hyperoxia also transiently activated ERK1/2 in HPAECs. ERK1/2 inhibition disrupted angiogenesis in vitro, and these effects were associated with altered levels of proteins that modulate cell cycle progression. Collectively, these findings support our hypotheses, emphasizing that the ERK1/2 pathway is a potential therapeutic target for BPD infants with decreased lung vascularization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983575 | PMC |
http://dx.doi.org/10.3390/ijms19051525 | DOI Listing |
Sci Rep
January 2025
TUBITAK Marmara Research Center, Climate Change and Life Sciences, Biotechnology Research Group, 41470, Kocaeli, Turkey.
In this study, the in vitro photodynamic therapy (PDT) activity of two zinc phthalocyanines (ZnPc1 and ZnPc2) was systematically examined in human umbilical vein endothelial cells, focusing on PDT-induced cytotoxicity, reactive oxygen species (ROS) generation, and inhibition of angiogenic processes. Both the ZnPcs demonstrated minimal cytotoxicity in the absence of light, confirming their safety as photosensitizers. ZnPc-PDT led to significant cell death via apoptosis.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, 210093, Nanjing, P.R. China.
Psoriasis is a chronic inflammatory skin disorder characterized by hyperproliferation of keratinocytes and persistent inflammation. Although persistent activation of signal transducer and activator of transcription 3 (STAT3) is implicated in its pathogenesis, the mechanisms underlying the sustained STAT3 activation remain poorly understood. Here, we identify sphingosine-1-phosphate receptor 3 (S1PR3) as a critical regulator of STAT3 activation and psoriasis pathogenesis, orchestrating a self-amplifying circuit that sustains keratinocyte hyperproliferation and chronic inflammation.
View Article and Find Full Text PDFBone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!