Aim: Several novel pharmacogenomic diagnostic tests are commercially available for breast and colorectal cancer, and are increasingly being used in clinical practice for improving treatment decisions. However, there is little evidence evaluating the value of these new genomic technologies from the perspective of patients. As part of an ongoing effort to understand the continuum of the process of adoption of genomic diagnostics, our aim in this study was to examine the value of genomic diagnostics to breast and colorectal cancer patients, and their willingness to adopt and use genomic diagnostics.
Patients & Methods: We conducted six focus groups of breast and colorectal cancer patients from the oncology clinics at The Methodist Hospital, Houston, TX, USA. An adapted Q-sort instrument was also administered to focus group participants.
Results: The majority of breast and colorectal cancer patients are interested in using novel genomic diagnostics for deciding about treatment options. Most participants in our study expressed a willingness to pay out-of-pocket for genomic testing (z = 0.736). Reliability and validity of genomic testing were of significant concern (z = 1.32) for the majority of breast and colorectal cancer patients. Participants identified several facilitators and barriers within health systems that might either facilitate or impede the widespread adoption and use of genomic diagnostics in healthcare delivery.
Conclusion: This study demonstrates breast and colorectal cancer patients' willingness to adopt and pay for novel genomic diagnostics, as well as identifies several salient factors associated with patient preferences for genomic diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/pme.11.39 | DOI Listing |
Unlabelled: Immune escape is a critical hallmark of cancer progression and underlies resistance to multiple immunotherapies. However, it remains unclear when the genetic events associated with immune escape occur during cancer development. Here, we integrate functional genomics studies of immunomodulatory genes with a tumor evolution reconstruction approach to infer the evolution of immune escape across 38 cancer types from the Pan-Cancer Analysis of Whole Genomes dataset.
View Article and Find Full Text PDFWorld J Clin Oncol
January 2025
Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China.
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan.
Objectives: This study used the Disability-Adjusted Life Years (DALYs) to quantify the long-term trends for four cancers (oral cancer, colorectal cancer, breast cancer, and cervical cancer) that have undergone cancer screening in Taiwan.
Methods: DALYs were calculated as the sum of Years of Life Lost (YLL) due to premature mortality and Years Lived with Disability (YLD). YLLs were determined using cancer-specific mortality data from the Health Promotion Administration (HPA), Ministry of Health and Welfare, based on age-specific life expectancy.
Oncol Res
January 2025
College of Food Sciences, Al-Qasim Green University, Babylon, Iraq.
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!