Introduction: Data audits within clinical settings are extensively used as a major strategy to identify errors, monitor study operations and ensure high-quality data. However, clinical trial guidelines are non-specific in regards to recommended frequency, timing and nature of data audits. The absence of a well-defined data quality definition and method to measure error undermines the reliability of data quality assessment. This review aimed to assess the variability of source data verification (SDV) auditing methods to monitor data quality in a clinical research setting.
Material And Methods: The scientific databases MEDLINE, Scopus and Science Direct were searched for English language publications, with no date limits applied. Studies were considered if they included data from a clinical trial or clinical research setting and measured and/or reported data quality using a SDV auditing method.
Results: In total 15 publications were included. The nature and extent of SDV audit methods in the articles varied widely, depending upon the complexity of the source document, type of study, variables measured (primary or secondary), data audit proportion (3-100%) and collection frequency (6-24 months). Methods for coding, classifying and calculating error were also inconsistent. Transcription errors and inexperienced personnel were the main source of reported error. Repeated SDV audits using the same dataset demonstrated ∼ 40% improvement in data accuracy and completeness over time. No description was given in regards to what determines poor data quality in clinical trials.
Conclusions: A wide range of SDV auditing methods are reported in the published literature though no uniform SDV auditing method could be determined for "best practice" in clinical trials. Published audit methodology articles are warranted for the development of a standardised SDV auditing method to monitor data quality in clinical research settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2018.05.010 | DOI Listing |
Biomed Phys Eng Express
January 2025
Shandong Normal University, Jinan, Jinan, Shandong, 250014, CHINA.
In the medical field, endoscopic video analysis is crucial for disease diagnosis and minimally invasive surgery. The Endoscopic Foundation Models (Endo- FM) utilize large-scale self-supervised pre-training on endoscopic video data and leverage video transformer models to capture long-range spatiotemporal dependencies. However, detecting complex lesions such as gastrointestinal metaplasia (GIM) in endoscopic videos remains challenging due to unclear boundaries and indistinct features, and Endo-FM has not demonstrated good performance.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Cooperative Extension, Napa, California, United States;
The timely detection of viral pathogens in vineyards is a critical aspect of management. Diagnostic methods can be labor-intensive and may require specialized training or facilities. The emergence of artificial intelligence (AI) has the potential to provide innovative solutions for disease detection but requires a significant volume of high-quality data as input.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.
Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.
View Article and Find Full Text PDFJMIR Pediatr Parent
January 2025
Participatory eHealth and Health Data Research Group, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
Background: With the increasing implementation of patient online record access (ORA), various approaches to access to minors' electronic health records have been adopted globally. In Sweden, the current regulatory framework restricts ORA for minors and their guardians when the minor is aged between 13 and 15 years. Families of adolescents with complex health care needs often desire health information to manage their child's care and involve them in their care.
View Article and Find Full Text PDFJMIR Ment Health
January 2025
Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
Background: Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!