Interconnected microporous biodegradable and biocompatible chitin/silk fibroin/TiO nanocomposite wound dressing with high antibacterial, blood clotting and mechanical strength properties were synthesized using freeze-drying method. The prepared nanocomposite dressings were characterized using SEM, FTIR, and XRD analysis. The prepared nanocomposite dressings showed high porosity above 90% with well-defined interconnected porous construction. Swelling and water uptake of the dressing were 93%, which is great for wound dressing applications. Haemostatic potential of the prepared dressings was studied and the results proved the higher blood clotting ability of the nanocomposites compared to pure components and commercially available products. Besides, cell viability, attachment and proliferation by MTT assay and DAPI staining on HFFF2 cell as a Human Caucasian Foetal Foreskin Fibroblast proved the cytocompatibility nature of the nanocomposite scaffolds with well improved proliferation and cell attachment. To determine the antimicrobial efficiencies, both disc diffusion method and colony counts were performed and results imply that nanocomposite scaffolds have high antimicrobial activity and could successfully inhibit the growth of E. coli, S. aureus, and C. albicans. Moreover, based on these results, the prepared chitin/silk fibroin/TiO nanocomposite dressing could serve as a kind of promising wound dressing with great antibacterial and antifungal properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.05.102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!