Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.

J Control Release

Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland. Electronic address:

Published: August 2018

Gene-activated scaffolds have been shown to induce controlled, sustained release of functional transgene both in vitro and in vivo. Bone morphogenetic proteins (BMPs) are potent mediators of osteogenesis however we found that the delivery of plasmid BMP-2 (pBMP-2) alone was not sufficient to enhance bone formation. Therefore, the aim of this study was to assess if the use of a series of modified BMP-2 plasmids could enhance the functionality of a pBMP-2 gene-activated scaffold and ultimately improve bone regeneration when implanted into a critical sized bone defect in vivo. A multi-cistronic plasmid encoding both BMP-2 and BMP-7 (BMP-2/7) was employed as was a BMP-2-Advanced plasmid containing a highly truncated intron sequence. With both plasmids, the highly efficient cytomegalovirus (CMV) promoter sequence was used. However, as there have been reports that the elongated factor 1-α promoter is more efficient, particularly in stem cells, a BMP-2-Advanced plasmid containing the EF1α promoter was also tested. Chitosan nanoparticles (CS) were used to deliver each plasmid to MSCs and induced transient up-regulation of BMP-2 protein expression, in turn significantly enhancing MSC-mediated osteogenesis when compared to untreated controls (p < 0.001). When incorporated into a bone mimicking collagen-hydroxyapatite scaffold, the BMP-2-Advanced plasmid, under the control of the CMV promotor, induced MSCs to produce approximately 2500 μg of calcium per scaffold, significantly higher (p < 0.001) than all other groups. Just 4 weeks post-implantation in vivo, this cell-free gene-activated scaffold induced significantly more bone tissue formation compared to a pBMP-2 gene-activated scaffold (p < 0.001) as indicated by microCT and histomorphometry. Immunohistochemistry revealed that the BMP-2-Advanced plasmid accelerated differentiation of osteoprogenitor cells to mature osteoblasts, thus causing rapid healing of the bone defects. This study confirms that optimising the plasmid construct can enhance the functionality of gene-activated scaffolds and translate to accelerated bone formation in a critical sized defect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.05.022DOI Listing

Publication Analysis

Top Keywords

bmp-2-advanced plasmid
12
gene-activated scaffold
8
plasmid
6
delivery improved
4
improved bmp-2-advanced
4
plasmid dna
4
dna gene-activated
4
scaffold accelerates
4
accelerates mesenchymal
4
mesenchymal stem
4

Similar Publications

Background: To date, the significant osteoinductive potential of bone morphogenetic protein 2 (BMP-2) non-viral gene therapy cannot be fully exploited therapeutically. This is mainly due to weak gene delivery and brief expression peaks restricting the therapeutic effect.

Objective: Our objective was to test the application of minicircle DNA, allowing prolonged expression potential.

View Article and Find Full Text PDF

Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.

J Control Release

August 2018

Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland. Electronic address:

Gene-activated scaffolds have been shown to induce controlled, sustained release of functional transgene both in vitro and in vivo. Bone morphogenetic proteins (BMPs) are potent mediators of osteogenesis however we found that the delivery of plasmid BMP-2 (pBMP-2) alone was not sufficient to enhance bone formation. Therefore, the aim of this study was to assess if the use of a series of modified BMP-2 plasmids could enhance the functionality of a pBMP-2 gene-activated scaffold and ultimately improve bone regeneration when implanted into a critical sized bone defect in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!