Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a new microsporidium from a key species of the estuarine communities of the Gulf States, the Riverine grass shrimp, Palaemonetes paludosus. A milky-white shrimp was found in the Mobile Bay Delta, a large, oligohaline-freshwater wetland in Alabama, USA. Light microscopy of smears and thick sections of the abdominal tissues demonstrated infection with microsporidian spores enclosed in sporophorous vesicles (SVs) in sets of eight. Broadly oval spores measured 2.9 ± 0.06 × 1.7 ± 0.03 µm (2.5-3.3 × 1.6-1.9 µm, n = 11). SVs with a persistent membrane ranged from 4.4 to 5.6 µm in diameter. Subcuticular epithelium and underlying musculature were packed with sporonts, sporoblasts, and spores. Electron microscopy demonstrated diplokaryotic meronts that gave rise to sporont mother cells with a large single nucleus. The meront plasma membrane turned into a SV envelope, and the sporont wall segregated internally. The sporont nucleus underwent meiosis followed by two mitotic divisions accompanied by internal budding to produce four sporonts, each dividing in two uninucleate sporoblasts. Eight-spore SVs were filled with fibrillary-tubular secretions. Spores possessed 90-110-nm thick envelopes (exospore, 40-60 nm + endospore, 30-50 nm), a triangle-shaped nucleus, isofilar polar filament of 10-13 coils arranged in two-three rows, bipartite polaroplast, and a mushroom-shaped polar disk. The SSU rDNA sequence of the novel species was deposited in GenBank under Accession number MG 708238. SSU rDNA-based phylogenetic analysis indicated that the Riverine grass shrimp microsporidium was a new species and placed it in one branch with two species of Potaspora, xenoma-forming microsporidia from freshwater perciform fishes. Because morphological and developmental characters of the novel species did not fit the diagnosis of the genus Potaspora, and, based on SSU rDNA-inferred phylogenetic analyses, different host specificity, pathogenesis, and ecological considerations, we erect here the new genus Apotaspora for the Riverine grass shrimp microsporidium and name the new species Apotaspora heleios. Grouping together fish and crustacean parasites on SSU rDNA phylogenetic trees suggests that polyxenous life cycles might be a common feature of extinct and/or extant members of the studied lineage of the Microsporidia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2018.05.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!