Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel wide-bandgap copolymer of PBDT-ODZ based on benzo[1,2-b:4,5-b' ]dithiophene (BDT) and 1,3,4-oxadiazole (ODZ) blocks is developed for efficient nonfullerene polymer solar cells (NF-PSCs). PBDT-ODZ exhibits a wide bandgap of 2.12 eV and a low-lying highest occupied molecular orbital (HOMO) level of -5.68 eV, which could match well with the low-bandgap acceptor of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylthienyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene (ITIC-Th), inducing a good complementary absorption from 300 to 800 nm and a minimal HOMO level offset (0.1 eV). The PBDT-ODZ:ITIC-Th devices exhibit a large open-circuit voltage (V ) of 1.08 eV and a low energy loss (E ) of 0.50 eV, delivering a high power conversion efficiency (PCE) of 10.12%. By adding a small amount of copper(I) iodide (CuI) as an additive to form coordination complexes in the active blends, much higher device performances are achieved due to the improved absorption and crystallinity. After incorporating 4% of CuI, the PCE is elevated to 12.34%, with a V of 1.06 V, a J of 17.1 mA cm and a fill factor of 68.1%. This work not only provides a novel oxadiazole-containing wide-bandgap polymeric donor candidate for high-performance NF-PSCs but also presents an efficient morphology-optimization approach to elevate the PCE of NF-PSCs for future practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201800737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!